• Title/Summary/Keyword: Critical Node

Search Result 284, Processing Time 0.026 seconds

Bio-MAC: Optimal MAC Protocol for Various Bio-signal Transmission in the WBSN Environment (Bio-MAC: WBSN환경에서 다양한 생체신호 전송을 위한 최적화된 MAC Protocol)

  • Jang, Bong-Mun;Ro, Young-Sin;Yoo, Sun-Kook
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.423-425
    • /
    • 2007
  • In this paper, Medium Access Control(MAC) protocol designed for Wireless Body area Sensor Network(Bio-MAC) is proposed, Because in WBSN, the number of node is limited and each node has different characteristics. Also, reliability in transmitting vital data sensed at each node and periodic transmission should be considered so that general MAC protocol cannot satisfy such requirements of biomedical sensors in WBSN. Bio-MAC aims at optimal MAC protocol in WBSN. For this, Bio-MAC used Pattern -SuperFrame, which modified IEE E 802.15.4-based SuperFrame structurely. Bio-MAC based on TDMA uses Medium Access-priority and Pattern eXchange -Beacon method for dynamic slot allocation by considering critical sensing data or power consumption level of sensor no de etc. Also, because of the least delay time. Bio-MAC is suitable in the periodic transmission of vital signal data. The simulation results demonstrate that a efficient performance in WBSN can be achieved through the proposed Bio-MAC.

  • PDF

Complete Time Algorithm for Stadium Construction Scheduling Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.81-86
    • /
    • 2015
  • This paper suggests heuristic algorithm with linear time complexity to decide the normal and optimal point at minimum loss/maximum profit maximum shortest scheduling problem with additional loss cost and bonus profit cost. This algorithm computes only the earliest ending time for each node. Therefore, this algorithm can be get the critical path and project duration within O(n) time complexity and reduces the five steps of critical path method to one step. The proposed algorithm can be show the result more visually than linear programming and critical path method. For real experimental data, the proposed algorithm obtains the same solution as linear programming more quickly.

Critical Wedging Coefficient in Frictional Elastic System Considering Separation State (분리 상태를 고려한 탄성마찰시스템의 임계 쐐기 계수)

  • Kim, Sangkyu;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.324-331
    • /
    • 2020
  • Wedging in a frictional elastic system is defined if the state of stick exists after the external loading on the system is removed. This paper presents a method to determine the critical coefficient of wedging for an elastic frictional system by considering the separation state. Wedging is always possible if the coefficient of friction exceeds a critical value known as the critical wedging coefficient. This method requires two concepts: a necessary and sufficient condition for wedging, which can be interpreted as positive spanning sets of constraint vectors existing in the wedged system, and the minimal positive basis that enables a minimum wedging coefficient. The algorithm based on the positive spanning concept is repeatedly executed after eliminating nodes from the contact stiffness matrix, for which the separation states are impending. The simulation results show that once a node enters the separation state, it never returns to the contact state again and the critical wedging coefficient reduces during repeated algorithm execution. The benefit of this method is that the computation time permits handling models with large numbers of contact nodes. The algorithm can also numerically find the critical wedging coefficient, thereby contributing to fastening and assembly performance improvements in mechanical systems.

Ultimate Fracture Strength Analysis of Initially Cracked Plate (초기균열을 가진 판의 최종파괴 강도해석)

  • 백점기;서흥원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.133-138
    • /
    • 1991
  • The aim of the present paper is to develop a computer program predicting ultimate fracture strength of initially cracked structure under monotonically increasing external loads. For this purpose, two kinds of 3-D isoparametric solid elements, one 6-node wedge element and another 8-node brick element are formulated along the small deformation theory. Plasticity in the element is checked using von Mises' yield criterion. Elasto-plastic stiffness matrix of the element is calculated taking account of strain hardening effect. If the principal strain at crack tip which is one nodal point exceeds the critical strain dependin on the material property, crack tip is supposed to be opened and the crack tip node which was previously constrained in the direction perpendicular to the crack line is released. After that, the crack lay be propagated to the adjacent node. Once a crack tip node is fractured, the energy of the newly fractured node should be released which is to be absorbed by the remaining part. The accumulated reaction force which was carried by the newly fractured node so far is then applied in the opposite direction. During the action of crack tip relief force, since unloading may be occured in the plastic element, unloading check should be made. If a plastic element unloads, elastic stress-strain equation is used in the calculation of the stiffness matrix of the element, while for a loading element, elasto-plastic stress-strain equation is continuously used. Verification of the computer program is made comparing with the experimental results for center cracked panel subjected to uniform tensile load. Also some factors affecting ultimate fracture strength of initially cracked plate are investigated. It is concluded that the computer program developed here gives an accurate solution and becomes useful tool for predicting ultimate fracture load of initially cracked structural system under monotonically increasing external loads.

  • PDF

A New Packet Forwarding Architecture For Fairness Improvement in Wireless Sensor Network (무선 센서 네트워크 환경에서 공정성 향상을 위한 새로운 패킷 전송 구조)

  • Song, Byung-Hun;Lee, Hyung-Su;Ham, Kyung-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.215-217
    • /
    • 2004
  • In wireless sensor networks, fair allocation of bandwidth among different nodes is one of the critical problems that effects the serviceability of the entire system. Fair bandwidth allocation mechanisms, like fair queuing, usually need to maintain state, manage buffers, and perform packet scheduling on a per flow basis, and this complexity may prevent them from being cost-effectively implemented and widely deployed. It is a very important and difficult technical issue to provide packet scheduling architecture for fairness in wireless sensor networks. In this paper, we propose an packet scheduling architecture for sensor node, called FISN (Fairness Improvement Sensor Network), that significantly reduces this implementation complexity yet still achieves approximately fair bandwidth allocations. Sensor node for sensing estimate the incoming rate of each sensor device and insert a label into each transmission packet header based on this estimate. Sensor node for forwarding maintain no per flow state; they use FIFO packet scheduling augmented by a probabilistic dropping algorithm that uses the packet labels and an estimate of the aggregate traffic at the gathering node. We present the detailed design, implementation, and evaluation of FISN using simulation. We discuss the fairness improvement and practical engineering challenges of implementing FISN in an experimental sensor network test bed based on ns-2.

  • PDF

Novel Architecture of Self-organized Mobile Wireless Sensor Networks

  • Rizvi, Syed;Karpinski, Kelsey;Razaque, Abdul
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.163-176
    • /
    • 2015
  • Self-organization of distributed wireless sensor nodes is a critical issue in wireless sensor networks (WSNs), since each sensor node has limited energy, bandwidth, and scalability. These issues prevent sensor nodes from actively collaborating with the other types of sensor nodes deployed in a typical heterogeneous and somewhat hostile environment. The automated self-organization of a WSN becomes more challenging as the number of sensor nodes increases in the network. In this paper, we propose a dynamic self-organized architecture that combines tree topology with a drawn-grid algorithm to automate the self-organization process for WSNs. In order to make our proposed architecture scalable, we assume that all participating active sensor nodes are unaware of their primary locations. In particular, this paper presents two algorithms called active-tree and drawn-grid. The proposed active-tree algorithm uses a tree topology to assign node IDs and define different roles to each participating sensor node. On the other hand, the drawn-grid algorithm divides the sensor nodes into cells with respect to the radio coverage area and the specific roles assigned by the active-tree algorithm. Thus, both proposed algorithms collaborate with each other to automate the self-organizing process for WSNs. The numerical and simulation results demonstrate that the proposed dynamic architecture performs much better than a static architecture in terms of the self-organization of wireless sensor nodes and energy consumption.

A Prediction-based Energy-conserving Approximate Storage and Query Processing Schema in Object-Tracking Sensor Networks

  • Xie, Yi;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang;Tang, Guoming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.909-937
    • /
    • 2011
  • Energy efficiency is one of the most critical issues in the design of wireless sensor networks. In object-tracking sensor networks, the data storage and query processing should be energy-conserving by decreasing the message complexity. In this paper, a Prediction-based Energy-conserving Approximate StoragE schema (P-EASE) is proposed, which can reduce the query error of EASE by changing its approximate area and adopting predicting model without increasing the cost. In addition, focusing on reducing the unnecessary querying messages, P-EASE enables an optimal query algorithm to taking into consideration to query the proper storage node, i.e., the nearer storage node of the centric storage node and local storage node. The theoretical analysis illuminates the correctness and efficiency of the P-EASE. Simulation experiments are conducted under semi-random walk and random waypoint mobility. Compared to EASE, P-EASE performs better at the query error, message complexity, total energy consumption and hotspot energy consumption. Results have shown that P-EASE is more energy-conserving and has higher location precision than EASE.

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

A Study on the 2-node Torsional Vibration for Marine Diesel Engine Crankshaft (선박용 디젤기관 크랭크 축계의 2절 비틀림 진동에 대한 연구)

  • Choi, Moon-Keel;Park, Kun-Woo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.54-61
    • /
    • 2008
  • With the development of computer program in calculation for torsional vibration of ship's propulsion shafting it has become possible to calculate all order's vibratory amplitude, vibratory torque, vibratory stress and synthesis value at all concerned revolutions by way of solving the vibratory equation directly. Though this kind of propulsion shafting vibration calculation method makes it possible to get generalized and precise result of calculation, the unexpected critical crankshaft torsional vibration has still appeared in maneuvering range of the engine. A close investigation has been carried out to find out the cause for the 2-node propulsion shafting torsional vibration of the crankshaft that exceeded the limitation value near the MCR 104rpm on the sea trial of the recently delivered 6000TEU class container vessel from HHIC. In conclusion, as the latest super-output engine with heavy crankshaft and propeller mass seems to be liable to 2-node torsional vibration of crankshaft, it is recommend that, in the design stage of propulsion shafting, its torsional vibration condition must be more carefully checked.

  • PDF

An Effective Algorithm for Diagnosing Sensor Node Faults (효율적인 센서 노드 고장 진단 알고리즘)

  • Oh, Won-Geun;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.283-288
    • /
    • 2015
  • The possible erroneous output data of the sensor nodes can cause the performance limit or the degradation of the reliability in the whole wireless sensor networks(WSN). In this paper, we propose a new sensor node scheme with multiple sensors and a new fault diagnostic algorithm. The algorithm can increase the reliability of the whole WSNs by utilizing measurements of the multiple sensors on the node and by determining the validity of the date by comparing the value of each sensor. It can increase the cost and complexity of the node, but is suitable for the area where the high reliability is critical.