• 제목/요약/키워드: Critical Moment

검색결과 357건 처리시간 0.024초

타원혼합모형을 이용한 초임계상태 이산화탄소의 압축성계수에 의한 난류열전달 특성 (Compressibility Factor Effect on the Turbulence Heat Transfer of Super-critical Carbon Dioxide by an Elliptic-blending Second Moment Closure)

  • 한성호;서정식;신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.40-50
    • /
    • 2007
  • The present contribution describes the application of elliptic-blending second moment closure to predict the gas cooling process of turbulent super-critical carbon dioxide flow in a square cross-sectioned duct. The gas cooling process under super-critical state experiences a drastic change in thermodynamic and transport properties. Redistributive terms in the Reynolds stress and turbulent heat flux equations are modeled by an elliptic-blending second moment closure in order to represent strongly non-homogeneous effects produced by the presence of walls. The main feature of Durbin's elliptic relaxation second moment closure that accounts for the nonlocal character of pressure-velocity gradient correlation and the near-wall inhomogeneity guaranteed by the elliptic blending second moment closure.

운동화의 생체역학적 평가시 하지 회내운동의 운동학적 평가변인에 대한 상해 기준치 연구 (The Study on critical Value of Kinematical Evaluation Variables of Lower Extremity Pronation in Biomechanical Evaluation of Running Shoes)

  • 곽창수;전민주;권오복
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.175-187
    • /
    • 2006
  • The purpose of this study was to find the relationship between Achilles tendon angle, angular velocity from 2D cinematography utilized to easily analyze the functions of shoes, ankle joint moment, knee joint moment, and hip joint moment from 3D cinematography utilized to predict the injury. Also, this study was to provide the optimal standard to analyze the injury related to the shoes. Subjects in this study were 30 university male students and 18 conditions (2 types of running speed, 3 of midsole hardness, 3 of midsole height) were measured using cinematography and force platform. The results were as following. 1) Hip joint abduction moment was effected by many variables such as running speed, midsole height, maximum achilles tendon angle, ground reaction force. 2) Knee joint rotational moment in running was approximately 1/10 - 1/4 times of the injury critical value and eversion moment was approximately 1/4 - 1/2 times of the injury critical value. 3) Ankle joint pronation moment in running was 1/3 - 1/2 times of the injury critical value. 4) Knee joint rotational moment was found to be irrelevant with maximum achilles tendon angle or angular velocity. 5) Pronation from running was thought to be relevant to rather eversion moment activity than rotational moment activity of knee joint. 6) Plantar flexion abductor of ankle showed significant relationship with the ground reaction force variable. 7) When the loading rate for ground reaction force in passive region increased, extensor tended to be exposed to the injury. Main variables in biomechanical analysis of shoes were impact absorption and pronation. Among these variables, pronation factor was reported to be relevant with knee injury from long duration exercise. Achilles tendon angle factor was utilized frequently to evaluate this. However, as the results of this study showed, the relationship between these variables and injury relating variable of knee moment was so important. Studies without consideration on this finding should be reconsidered and reconfirmed.

현장 인발시험을 통한 수목의 한계 전도모멘트 검토 (Investigation of Critical Breaking Moment through Field Tree-Pulling Test)

  • 임동균;김원;최성욱;김용전
    • 대한토목학회논문집
    • /
    • 제31권4B호
    • /
    • pp.323-332
    • /
    • 2011
  • 하천에서 수목의 관리를 위해서는 수목이 홍수에 미치는 영향이나 생태적 특성을 고려하여 대책을 수립하여야 한다. 수목에 의한 수리학적 영향은 통수능 감소와 유수력에 의한 전도로 인한 하류 하천시설물의 기능 저해이다. 현장 인발시험은 수목이 전도될 때의 최대 저항력을 측정하여, 하천 내의 수목이 외력에 저항하는 정도를 파악하기 위해 시행하였다. 수목의 전도모멘트를 파악하기 위한 인자는 수목의 외형적 특성인 수종, 흉고직경, 수고 등이며, 본 연구에서는 전도모멘트와 흉고 직경의 상관관계를 이용하였다. 수목의 한계 전도모멘트는 흉고직경 4.9-32.8 cm의 관목과 교목 100주를 바탕으로 검토되었다. 교목과 관목을 함께 고려할 경우에는 흉고직경과 한계 전도모멘트의 상관관계를 도출하기 어려웠다. 그러나 교목만을 고려할 경우에는 흉고직경과 한계 전도모멘트 사이에 일정한 상관관계가 있음을 확인하였다.

Lateral-torsional buckling resistance of composite steel beams with corrugated webs

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.751-767
    • /
    • 2022
  • In the hogging bending moment area, continuous composite beams are subjected to the ultimate limit state of lateral-torsional buckling (LTB), which depends on web stiffness as well as concrete slab and shear connection stiffnesses. The design of the LTB and the determination of the elastic critical moment are produced approximately, using the European Standard EN 1994-1-1:2004, for continuous composite steel beams, but is applicable only for those with a plane web steel profile. Also, and from the previous researches, the elastic critical moment of the continuous composite beams with corrugated sinusoidal web steel profiles was determined. In this paper, a finite element analysis (FEA) model was developed using the ANSYS 16 software, to determine the elastic critical moments of continuous composite steel beams with various corrugated web profiles, such as trapezoidal, zigzag, and rectangular profiles, which were evaluated against numerical data of the sinusoidal one from the literature. Ultimately, the failure load of a composite steel beam with various web profiles was predicted by studying 46 models, based on FEA modeling, and a procedure for predicting the elastic critical moment of composite beams with various web steel profiles was proposed. When compared to sinusoidal web profiles, the trapezoidal, zigzag, and rectangular web profiles required an average increase in load capacity and stiffness of 7%, 17.5%, and 28%, respectively, according to the finite element analysis. Also, the rectangular web steel profile has a greater stiffness and load capacity. In contrast, the sinusoidal web has lower values for these characteristics.

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column)

  • 윤한익;박일주;진종태;김영수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column)

  • 윤한익;박일주;김영수
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF

Effects of elastic medium on buckling of microtubules due to bending and torsion

  • Taj, Muhammad;Hussain, Muzamal;Afsar, Muhammad A.;Safeer, Muhammad;Ahmad, Manzoor;Naeem, Muhammad N.;Badshah, Noor;Khan, Arshad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.491-501
    • /
    • 2020
  • Microtubules buckle under bending and torsion and this property has been studied for free microtubules before using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical buckling moment is about 6.04 nNnm for which the corresponding curvature is about θ = 1.33 rad /㎛ for embedded MTs, and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/㎛. Our results well proved the experimental findings.

Exact solutions of variable-arc-length elasticas under moment gradient

  • Chucheepsakul, Somchai;Thepphitak, Geeraphong;Wang, Chien Ming
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.529-539
    • /
    • 1997
  • This paper deals with the bending problem of a variable-are-length elastica under moment gradient. The variable are-length arises from the fact that one end of the elastica is hinged while the other end portion is allowed to slide on a frictionless support that is fixed at a given horizontal distance from the hinged end. Based on the elastica theory, exact closed-form solution in the form of elliptic integrals are derived. The bending results show that there exists a maximum or a critical moment for given moment gradient parameters; whereby if the applied moment is less than this critical value, two equilibrium configurations are possible. One of them is stable while the other is unstable because a small disturbance will lead to beam motion.

일축대칭 I형보의 탄성좌굴강도 산정에 관한 연구 (A Study on the Evaluation of elastic buckling strength of Singly Symmetric I-Beams)

  • 구소연;류효진;임남형;이진옥
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.79-82
    • /
    • 2008
  • 모멘트 하중을 받는 I형 보의 탄성좌굴강도는 하중의 종류, 하중의 단면 내 작용위치, 그리고 구속조건 등과 같은 인자들에 의해 영향을 받는다. 대부분의 시방기준에서는 균일한 모멘트 조건에 대한 좌굴강도를 사용하고 있으며 비균일한 모멘트 효과를 고려하기 위하여 모멘트 구배 수정계수를 적용하고 있다. 본 논문에서는 SSRC 지침서의 방법을 일축대칭 I형 보에 적용할 수 있도록 개선된 모멘트 구배 수정계수를 제안하였다. 단면 내 임의의 높이에 작용하는 연직방향 하중에 대한 일축대칭 I형 보의 유한요소 좌굴해석을 실시하였으며 연직방향 하중은 지간 중앙에 작용하는 집중하중과 등분포 하중을 고려하였다.

  • PDF

Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection

  • Lim, Chemin;Choi, Wonchang;Sumner, Emmett A.
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.57-71
    • /
    • 2013
  • The prediction of the low cycle fatigue (LCF) life of beam-column connections requires an LCF model that is developed using specific geometric information. The beam-column connection has several geometric variables, and changes in these variables must be taken into account to ensure sufficient robustness of the design. Previous research has verified that the finite element model (FEM) can be used to simulate LCF behavior at the end plate moment connection (EPMC). Three critical parameters, i.e., end plate thickness, beam flange thickness, and bolt distance, have been selected for this study to determine the geometric effects on LCF behavior. Seven FEMs for different geometries have been developed using these three critical parameters. The finite element analysis results have led to the development of a modified LCF model for the critical parameter groups.