• Title/Summary/Keyword: Critical Low Temperature

Search Result 501, Processing Time 0.035 seconds

Magnetic Field Dependence of Low Temperature Specific Heat Jump in Superconducting Crystal (초전도 결정의 저온 비열 점프의 자기장 의존성)

  • Kim, Cheol-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.73-77
    • /
    • 2011
  • Specific heat of a crystal is the sum of electronic specific heat, which is the specific heat of conduction electrons, and lattice specific heat, which is the specific heat of the lattice. Since properties such as crystal structure and Debye temperature do not change even in the superconducting state, the lattice specific heat may remain unchanged between the normal and the superconducting state. The difference of specific heat between the normal and superconducting state may be caused only by the electronic specific heat difference between the normal and superconducting states. Critical temperature, at which transition occurs, becomes lower than $T_{c0}$ under the influence of a magnetic field. It is well known that specific heat also changes abruptly at this critical temperature, but magnetic field dependence of jump of specific heat has not yet been developed theoretically. In this paper, specific heat jump of superconducting crystals at low temperature is derived as an explicit function of applied magnetic field H by using the thermodynamic relations of A. C. Rose-Innes and E. H. Rhoderick. The derived specific heat jump is compared with experimental data for superconducting crystals of $MgCNi_3$, $LiTi_2O_4$ and $Nd_{0.5}Ca_{0.5}MnO_3$. Our specific heat jump function well explains the jump up or down phenomena of superconducting crystals.

A Study on the Characteristics of Spontaneous Ignition for Rice Cracker (쌀과자의 자연발화 특성에 관한 연구)

  • Kim, Hong;Kang, Young-Goo
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.75-80
    • /
    • 1995
  • Spontaneous ignition characteristics of rice cracker were observed by preforming experiments at constant ambient temperature. As the results of the experiments, the critical spontaneous ignition temperature were exponentially decreased with the increase of ambient temperature. Type of combustion of rice cracker are smouldering combustion at low ignition temperature and flame combustion at high temperature. The rice cracker containing pam oil showed lower spontaneous ignition temperature than pure rice cracker because of oxidation heat of pam oil.

  • PDF

Critical Low Temperature and Response of Behavioral Tolerance in Red Seabream Pagrus major fingerlings Exposed to Cold Shock (저온 충격에 노출된 참돔 Pagrus major 치어의 임계 저 수온 및 행동 내성 반응)

  • Yoon, Sung Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.575-584
    • /
    • 2021
  • The critical low temperature and response of the behavioral tolerance of red sea bream Pagrus major fingerlings were determined using the continuous behavior monitoring system (CBMS). The behavior of the experimental organisms was observed by decreasing the water temperature by 2.0℃ and 4.0℃ every 12 hours and 24 hours in the range of 8.0-20.0℃. An unstable behavior pattern was observed in red seabream fingerlings exposed to water temperatures below 12.0℃, in which the swimming activity decreased and repeatedly stopped, regardless of the exposure time and water temperature fluctuation. The swimming ability of the organisms exposed to 8.0-10.0℃ decreased sharply, and the behavior of staying at the bottom of the test tank was observed. Only 50 % of the organisms survived due to the low-temperature stress, and all individuals died within six hours after the cold shock. In addition, the behavior index (BI) decreased rapidly, and the amplitude change of the coefficient of variation (CV) was found to have a greater variation than the other water temperatures (p<0.05). Low-temperature stress of red sea bream is promoted at 12.0℃, and it is interpreted as the tolerance limit, which can induce a sublethal response of the organisms exposed to cold shock of 8.0-10.0℃.

Examination of Ingredients of High Temperature Heat Resistant Inorganic Fire-Resistant Adhesive Using XRD Analysis (XRD 분석을 이용한 고온가열 무기계 내화 접착제의 성분검토)

  • Cho, Hyeon-Seo;Ji, Woo-Ram;Shin, Ki-Don;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.81-82
    • /
    • 2018
  • The structure of the RC structure is actively reinforcing the structure of the building which has suffered from aging, artificial and natural damage of the building. Among various reinforcement methods, epoxy adhesive is used to attach FRP in FRP reinforcement method which is reinforcing by attaching FRP to the structural part. At this time, the epoxy adhesive having a low critical temperature has a sudden adhesive failure upon exposure to heat, and thus, the development of an inorganic fireproof adhesive having a high critical temperature has progressed. Therefore, in this study, the compositional change of inorganic fire - resistant adhesive exposed to high temperature heat was analyzed by XRD.

  • PDF

Deformation Property of TiC-Mo Solid Solution Single Crystal at High Temperature by Compression Test (TiC-Mo 고용체 단결정의 고온 압축변형 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.625-631
    • /
    • 2014
  • To investigate the deformation properties of TiC-(5-20) mol% Mo solid solution single crystals at high temperature by compression testing, single crystals of various compositions were grown by the radio frequency floating zone technique and were deformed by compression at temperature from 1250K to 2270K at strain rates from $5.1{\times}10^{-5}$ to $5.9{\times}10^{-3}/s$. The plastic flow property of solid solution single crystals was found to be clearly different among a three-temperature range (low, intermediate and high temperature ranges) whose boundaries were dependent on the strain rate. From the observed property, we conclude that the deformation in the low temperature range is controlled by the Peierls mechanism, in the intermediate temperature range by the dynamic strain aging and in the high temperature range by the solute atmosphere dragging mechanism. The work softening tends to become less evident with an increasing experimental temperature and with a decreasing strain rate. The temperature and strain rate dependence of the critical resolved shear stress is the strongest in the high temperature range. The curves are divided into three parts with different slopes by a transition temperature. The critical resolved shear stress (${\tau}_{0.2}$) at the high temperature range showed that Mo content dependence of ${\tau}_{0.2}$ with temperature and the dependence is very marked at lower temperature. In the higher temperature range, ${\tau}_{0.2}$ increases monotonously with an increasing Mo content.

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

Fundamental characteristic analysis on 6 T-class high-temperature superconducting no-insulation magnet using turn-distributed equivalent circuit model

  • Liu, Q.;Choia, J.;Sim, K.;Kim, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • In order to obtain ultra-high resolution MRI images, research and development of 11 T or higher superconducting magnets have been actively conducted in the world, recently. The high-temperature superconductor (HTS), first discovered in 1986, was very limited in industrial application until mid-2010, despite its high critical current characteristics in the high magnetic field compared to the low-temperature superconductor. This is because HTS magnets were unable to operate stably due to the thermal damage when a quench occurred. With the introduction of no-insulation (NI) HTS magnet winding technology that does not burn electrically, it could be expected that the HTS magnets are dramatically reduced in weight, volume, and cost. In this paper, a 6 T-class NI HTS magnet for basic characteristic analysis was designed, and a distributed equivalent circuit model of the NI coils was configured to analyze the charging current characteristics caused by excitation current, and the charge delay phenomenon and loss were predicted through the development of a simulation model. Additionally, the critical current of the NI HTS magnets was estimated, considering the magnetic field, its angle and temperature with a given current. The loss due to charging delay characteristics was analyzed and the result was shown. It is meaningful to obtain detailed operation technology to secure a stable operation protocol for a 6T NI HTS magnet which is actually manufactured.

Electrical Properties of High Tc Superconductors Using the Pyrolysis Method for Renewed Electric Power Energy

  • Lee Sang-Heon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.217-220
    • /
    • 2005
  • We have fabricated a superconducting YBCO system according to the pyrolysis method and low pressure apparatus. In our experiment, the X-ray diffraction pattern of the non doped YBaCuO layer indicated that the superconductor contained only 90K phase crystal. The critical temperature and critical current density for a thick layer at $650^{\circ}C$ were Tc=90 K and $Jc=6{\times}10^{4}A/cm^2$ at 90K. In low pressure apparatus, the 90 K phase YBaCuO was grown at a lower temperature compared with the normal system. Tc and Jc at $650^{\circ}C$ were Tc = 90 K and $Jc=6{\times}10^{4}A/cm^2$ at 90K.

Effect of the Initial Microstructure of Low Temperature Superconducting Monowire on Critical Current Density (초기 미세조직에 따른 저온 초전도 모노선재의 임계전류밀도 분석)

  • Kim, H.R.;Oh, Y.S.;Kim, S.J.;Lee, H.W.;Kim, J.H.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Increasing the critical current density of superconducting wire is one of the difficult challenges in the field of superconductivity. It is well known that the higher volume fraction of uniformly dispersed α-Ti is able to enhance the critical current density of superconducting material NbTi because α-Ti serves as a flux pinning center. The volume fraction of α-Ti highly depends on the grain size of NbTi because α-Ti precipitates at the grain boundaries or triple points. For this purpose, we investigated the effect of initial microstructures of NbTi obtained from hot rolling in various temperature conditions on the critical current density. In addition, subsequent heat treatment was assigned to precipitate α-Ti and groove rolling/cold drawing was adopted to produce a wire with a diameter of about 1.0 mm. It was observed that the band structure was formed after hot rolling at 500~600℃. It was also found that the volume fraction of α-Ti after hot rolling at 500~600℃ was higher and it led to the highest critical current density.