• Title/Summary/Keyword: Critical Flow Venturi Nozzle

Search Result 2, Processing Time 0.016 seconds

Evaluation of Critical Flow Function by Using Helmholtz Free Energy for Natural Gas Flow Measurement (천연가스 유량 측정에서 헬름홀츠 자유에너지를 이용한 임계유동함수 계산)

  • Ha, Young-Cheol;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1167-1173
    • /
    • 2013
  • This study aimed to calculate the CFFs (critical flow functions) of a sonic nozzle bank with a 12-nozzle package within 1 s. Toward this end, the Helmholtz free energy of natural gas was formulated by using the AGA8-dc equation of state in a form without integral terms, and thereafter, thermodynamic properties such as the enthalpy, entropy, speed of sound, and heat capacity, which are used in CFF calculation, were derived in analytical form. As a result, the calculation time of CFFs was improved from 6.7 s in a previous study to 0.6 s per 12-nozzle package and kept almost constant regardless of the number of components in natural gas. Furthermore, it was confirmed that the calculated CFF values were in agreement with the results of a CFF international comparison test carried out under ISO management in 1998-1999.

Improvement of the Blasting Productivity by Optimizing the Abrasive-to-Air Mixing Ratio (Grit와 Air의 혼합비 최적화를 통한 블라스팅 효율 향상)

  • Bae, Han-Jin;Baek, Jae-Jin;Kim, Eul-Hyun;Chung, Mong-Ku;Shin, Chil-Seok;Baek, Kwang-Ki
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1436-1441
    • /
    • 2004
  • Achieving the maximum blasting efficiency with minimum abrasive consumption is a critical concern in surface preparation stage of shipbuilding and offshore industry. Increasing the abrasive flow rate beyond the optimum point results in a major reduction in productivity even though the amount of abrasive used is larger. So, this study is intend to find out the optimum abrasive-to-air mixing ratio which can make a significant improvement in blasting efficiency and remarkably reduce the amount of abrasive used. From the test results, it can be identified that as the abrasive feeding rate is increased linearly, blasting efficiency is increased to a maximum point and then gradually decreased in the form of a bell-shaped.

  • PDF