• Title/Summary/Keyword: Critical Flow Function

Search Result 137, Processing Time 0.028 seconds

Experimental / Computational Study of a variable Critical Nozzle Flow (가변형 임계노즐 유동에 관한 실험/수치해석적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.167-173
    • /
    • 2003
  • For the measurement of mass flow rate at a wide range of operation conditions, it is required that the critical nozzle gas different diameters, since the mass flow rate through the critical nozzle depends on the nozzle supply conditions and the nozzle throat diameter. In the present study, both computational and experimental investigations are performed to explore the variable critical nozzle. Computational work using the 2-dimensional, axisymmetric, compressible Navier-Stokes equations are carried out to simulate the gas flow through variable critical nozzle. In experimnet, a cylinder with several different diameters is inserted into the critical nozzle to vary the nozzle throat diameter. Computational results are compared with the experimented ones. The computed results are in close agreement with experiment. It is found that the displacement and momentum thickness of variable critical nozzle are given as a function of Reynolds numbers. The discharge coefficient of the variable critical nozzle is predicted using an empirical equation.

  • PDF

A Fundamental Study of a Variable Critical Nozzle Flow (가변형 임계 노즐유동에 관한 기초적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

Study of the Critical Gas Flow through an Orifice (오리피스를 통하는 임계 기체 유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.532-537
    • /
    • 2003
  • Gas flow through orifice is encountered in many diverse fields of engineering applications. In order to investigate the critical gas flow through an orifice system, a computational analysis is performed using axisymmetric, compressible, Navier-Stokes equations which are numerically solved by a fully implicit finite volume method. In the present study, the discharge coefficients of two different types of orifices which are a straight-bore orifice and a sharp-edged orifice, are predicted to obtain the critical flow conditions. The present CFD data are compared with the previous experimental results. The present computational results show that the critical mass flow rate through orifice is well predicted and it is a strong function of Reynolds number. The discharge coefficient increases with the orifice diameter.

  • PDF

Study on Two-Dimensional Laminar Flow through a Finned Channel (박막이 부착된 채널내의 2차원 층류유동장에 대한 연구)

  • Yoon Seok-Hyun;Jeong Jae-Tack
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.53-59
    • /
    • 2002
  • A two-dimensional laminar flow through a channel with a pair of symmetric vertical fins is investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The Stokes flow for this channel is first investigated analytically and then the other laminar flows by numerical method. For analytic method, the method of eigen function expansion and collocation method are employed. In numerical solution for laminar flows, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, the streamline patterns are shown and the additional pressure drop due to the attached fins and the force exerted on the fin are calculated. It is clear that the force depends on the length of fins and Reynolds number. When the Reynolds number exceeds a critical value, the flow becomes asymmetric. This critical Reynolds number Re/sub c/ depends on the length of the fins.

Study of Flow Structure and Pressure Drop Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 유동구조 및 압력강하 특성에 관한 연구)

  • Lee, K.S.;Jeon, C.D.;Lee, J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.140-154
    • /
    • 1994
  • Experimental studies were performed to determine the characteristics of flow structure and pressure drop in 15 : 1 scale models of multi-louvered fin heat exchanger in a wide range of variables($L_P/F_P=0.5{\sim}1.23$, ${\theta}=27^{\circ}{\sim}37^{\circ}$, $Re_{LP}=50{\sim}2000$). Flow structure inside the louvered fin was analyzed by smoketube method and new correlations on flow efficiency and drag coefficient were suggested. The new definition for flow efficiency, which modifies the existing flow efficiency, can predict the flow efficiency in the range above mentioned and is represented as a function of Reynolds number, louver pitch to fin pitch ratio, louver angle at low Reynolds number. Drag coefficient which is defined here is a function of Reynolds number, louver pitch to fin pitch ratio, louver angle below critical Reynolds number, and can be represented by a function of louver pitch to fin pitch ratio only above the critical Reynolds number.

  • PDF

Analysis of Hot Forming Process with Flow Softening by Dynamic Recrystallization (동적 재결정에 의한 연화를 고려한 열간성험공정 해석)

  • 방원규;이종수;장영원
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.137-143
    • /
    • 2001
  • The change of flow stress due to dynamic recrystallization during hot forming process is investigated. A series of mechanical tests has been conducted at various temperatures, and constitutive relations and recrystallization kinetics were formulated from the test results. The effect of dynamic recrystallization to the flow stress was implemented to a commercial FEM code by conditioned remapping of state variables. The datum strain of stress compensation was optimized to minimize the overestimation of forming loads. Suggested datum was formulated as an exclusive function of critical strain for recrystallizalion and validated by mechanical tests and microstructural observations.

  • PDF

Evaluation of Critical Flow Function by Using Helmholtz Free Energy for Natural Gas Flow Measurement (천연가스 유량 측정에서 헬름홀츠 자유에너지를 이용한 임계유동함수 계산)

  • Ha, Young-Cheol;Her, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1167-1173
    • /
    • 2013
  • This study aimed to calculate the CFFs (critical flow functions) of a sonic nozzle bank with a 12-nozzle package within 1 s. Toward this end, the Helmholtz free energy of natural gas was formulated by using the AGA8-dc equation of state in a form without integral terms, and thereafter, thermodynamic properties such as the enthalpy, entropy, speed of sound, and heat capacity, which are used in CFF calculation, were derived in analytical form. As a result, the calculation time of CFFs was improved from 6.7 s in a previous study to 0.6 s per 12-nozzle package and kept almost constant regardless of the number of components in natural gas. Furthermore, it was confirmed that the calculated CFF values were in agreement with the results of a CFF international comparison test carried out under ISO management in 1998-1999.

Evaluation of Critical Pressure Ratios Sonic Nozzle at Low Reynolds Numbers (음속 노즐의 임계 압력비에 대한 저 레이놀즈수의 영향)

  • Choe, Yong-Mun;Park, Gyeong-Am;Cha, Ji-Seon;Choe, Hae-Man;Yun, Bok-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1535-1539
    • /
    • 2000
  • A sonic nozzle is used as a reference flow meter in the area of gas flow rate measurement. The critical pressure ratio of sonic nozzle is an important factor in maintaining its operating condition. ISO9300 suggested the critical pressure ratio of sonic nozzle as a function of area ratio. In this study, 13 sonic nozzles were made by the design of ISC9300 with different half diffuser angles of 2。 to 8。 and throat diameters of 0.28 to 4.48 mm. The test results of half diffuser angles below 8。 ar quite similar to those of ISO9300. On the other hand, the critical pressure ratio for the nozzle of 8。 decreases by 5.5% in comparison with ISO9300. However, ISO9300 does not predict the critical pressure ratio at lower Reynolds numbers than 10(sup)5. Therefore, it is found that it is a better way for the flow of low Reynolds number to express the critical pressure ratio of sonic nozzle as a function of Reynolds number than area ratios. A correlation equation of critical pressure is introduced with uncertainty $\pm$3.2 % at 95% confidence level.

Cardiac Dysfunction Is Not Associated with Increased Reintubation Rate in Patients Treated with Post-extubation High-Flow Nasal Cannula

  • Sim, Jae Kyeom;Choi, Juwhan;Oh, Jee Youn;Min, Kyung Hoon;Hur, Gyu Young;Lee, Sung Yong;Shim, Jae Jeong;Lee, Young Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.4
    • /
    • pp.332-340
    • /
    • 2022
  • Background: Cardiac dysfunction patients have long been considered at high risk of reintubation. However, it is based on past studies in which only conventional oxygen therapy was applied after extubation. We investigated association between cardiac dysfunction and reintubation rate in situation where high-flow nasal cannula (HFNC) was widely used during post-extubation period. Methods: We conducted a retrospective observational cohort study of patients treated with HFNC after planned extubation in medical intensive care unit of single tertiary center. Patients were divided into normal function group (ejection fraction [EF] ≥45%) and cardiac dysfunction group (EF <45%). The primary outcome was reintubation rate within 72 hours following extubation. Results: Of 270 patients, 35 (13%) had cardiac dysfunction. Baseline characteristics were similar in both groups. There were no differences in the changes in vital signs between the two groups during the first 12 hours after extubation except diastolic blood pressure. The reintubation rates were 20% and 17% for cardiac dysfunction group and normal function group, respectively (p=0.637). In a multivariate Cox regression analysis, cardiac dysfunction was not associated with an increased risk of reintubation within 72 hours following extubation (hazard ratio, 1.56; p=0.292). Conclusion: Cardiac dysfunction was not associated with increased reintubation rate within 72 hours when HFNC is immediately applied after planned extubation.

MOSIM NETWORK FLOW MODELING FOR IMPROVING CRITICAL HABITAT IN PLATTE RIVER BASIN (플랫강 유역의 위험에 처한 서식지 보호를 위한 MODSIM 하천 네트워크 흐름모의)

  • Lee, Jin-Hee;Kim, Kil-Ho;Shim, Myung-Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.2039-2043
    • /
    • 2007
  • Like other major river basin systems in the West of the United States the Platte River Basin are faced with the challenges of allocating more water for plant and animal species. A part of the Central Platte River was designated as critical habitat for the whooping crane in 1978. The water allocation system in the Platte River Basin is dominated by the Prior Appropriation Doctrine, which allocates water according to the priorities based on the date of water use. The Platte River Basin segregated into five subregions for purpose of analysis. 24 years of historic records of monthly flow and all the demands were complied. The simulation of river basin modeling includes physical operation of the system including water allocation by water rights and interstate compact agreements, reservoir operations, and diversion with consumptive use and return flow. MODSIM, a generalized river basin network model, was used for estimating the timing and magnitude of impacts on river flows and diversions associated with water transfers from each region. A total of 20 alternatives were considered, covering transfers from each of the five regions of basin with several options. The result shows that the timing and availability of augmented water at the critical habitat is not only a function of use by junior appropriators, but also of river losses, and timing of return flows.

  • PDF