• Title/Summary/Keyword: Critical Flow Factor

Search Result 151, Processing Time 0.023 seconds

A Knowledge Stock and Flow Perspective for the Assimilation of Knowledge Management Innovation (지식관리혁신의 동화를 위한 지식의 축척과 흐름의 관점)

  • Lee, Jae Nam;Choi, Byoung-Gu
    • Knowledge Management Research
    • /
    • v.11 no.5
    • /
    • pp.1-23
    • /
    • 2010
  • In order to provide a better understanding about the phenomenon of KM assimilation, this study attempts to conceptually develop and empirically compare two different models: (1) the first model, which considers the KM process as the flow of knowledge that plays an intervening role between knowledge stocks (i.e., knowledge worker, technical knowledge infrastructure, external knowledge linkage, knowledge strategy, and internal knowledge climate) and the level of KM assimilation; and (2) the second model is a simple direct effect formulation without any distinction between knowledge stock and flow. These two models were then tested and compared using the responses of 187 Korean organizations that had already implemented enterprise-wide KM systems. The findings indicate that the two models are useful in explaining successful KM assimilation. However, the first causal model with the distinction between knowledge stock and flow assesses the effectiveness of KM more accurately than the second model without the distinction. Interestingly, the KM process was shown to be the most critical factor for the proliferation of KM activities across an organization. The findings of this study are expected to serve not only as early groundwork for researchers hoping to understand KM and its effective assimilation in organizations, but should also provide practitioners with guidelines as to how they can enhance their KM assimilation level so as to improve their organizational performance.

  • PDF

KAIST-CIWH Computer Code and a Guide Chart to Avoid Condensation-Induced Water Hammer in Horizontal Pipes

  • Chun, Moon-Hyun;Yu, Seon-Oh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.618-635
    • /
    • 2000
  • A total of 17 experimental data for the onset of slugging, which is assumed to be the precursor of the condensation-induced waterhammer (CIWH), have been obtained for various How rates of water Incorporating the most recent correlations of interfacial heat transfer and friction factor developed for a circular geometry and using an improved criterion of transition from stratified to a slug flow, two existing analytical models to predict lower and upper bounds for CIWH have been upgraded. Applicability of the present as well as existing CIWH models has been tested by comparison with two sets of CIWH data. The result of this comparison shows that the applicability of the present as well as existing models is reasonably good. Based on the present models for CIWH, a computer code entitled as“KAIST-CIWH”has been developed and sample guide charts to find CIWH free regions for a given combination of major flow parameters in a long horizontal pipe have been presented along with the results of parametric studies of major parameters (D, P, $T_{f,in}$, and L/D) on the critical inlet water flow rate($W_{f,in}_crit$ for both lower and upper bounds. In addition, two simple formulas for lower and upper bounds that can be used in an emergency for quick results have been presented.

  • PDF

AN IMPROVED HEAT TRANSFER CORRELATION FOR DEVELOPING POST-DRYOUT REGION IN VERTICAL TUBES

  • NGUYEN, NGOC HUNG;MOON, SANG-KI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.407-415
    • /
    • 2015
  • A developing post-dryout region is characterized by significant heat transfer enhancements compared with the fully developed post-dryout region. The heat transfer enhancements are mainly due to upstream disturbance and entrained droplets in the region immediately downstream of the critical heat flux location. In this paper, an improved heat transfer correlation is developed for the developing post-dryout regions in vertical tubes over a wide range of flow conditions. The correlation represents a correction factor for the fully developed film-boiling look-up table to be applied to the developing post-dryout region. The new correlation significantly improves the heat transfer prediction in the developing post-dryout regions and provides very good agreement with the experimental data.

An Application of Kohonen Neural Networks to Dynamic Security Assessment (전력계통 동태 안전성 평가에 코호넨 신경망 적용 연구)

  • Lee, Gwang-Ho;Park, Yeong-Mun;Kim, Gwang-Won;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.253-258
    • /
    • 2000
  • This paper presents an application of Kohonen neural networks to assess the dynamic security of power systems. The dynamic security assessment(DSA) is an important factor in power system operation, but conventional techniques have not achieved the desired speed and accuracy. The critical clearing time(CCT) is an attribute which provides significant information about the quality of the post-fault system behaviour. The function of Kohonen networks is a mapping of the pre-fault system conditions into the neurons based on the CCTs. The power flow on each line is used as the input data, and an activated output neuron has information of the CCT of each contingency. The trajectory of the activated neurons during load changes can be used in on-line DSA efficiently. The applicability of the proposed method is demonstrated using a 9-bus example.

  • PDF

A study on the reduction ratio of highway capacity in accordance to occurrence of accident (사고발생에 따른 고속도로용량감소율에 관한 연구)

  • Lee, Seong-Hun;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.141-148
    • /
    • 2009
  • An inappropriate evaluation of capacity leads to the incorrect and impractical result due to the transfer of error to the analysis and the evaluation on highway system. The traffic accident which reduces the capacity of road temporarily generates unpredictable congestion, causing difficulties in congestion management. Therefore, this research aims on the measurement of the capacity of the road in accordance to the speed at the accident which is a basic factor when performing analysis. Based on the given approach, the behavior of a vehicle in highway is understood to develop model of critical gap and model of maximum flow rate with respect to the speed of traffic flow. With the established model, the reduction rate of the capacity in highway system at the accident is measured. The result shows that the capacity is reduced by 37% when the speed of the traffic flow is 40km/h. Although the developed model can't be verified clearly, this research has shown that the reduction rate of the capacity in road system has a close relation to the speed.

Factors on the Intention to Purchase Charged Items in Mobile Social Network Game (모바일 소셜 네트워크 게임의 아이템 구매의도에 영향을 주는 요인)

  • Kim, Jae Min;Lee, Young Joo;Lee, Hye Won
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.165-178
    • /
    • 2014
  • Recently, the social network game (SNG) industry is expanding at a fast pace by the increase in the charged item sales. The objective of the present study is to explore factors influencing user intention to purchase charged items. Based on the literature review, flow has been introduced as an influential factor of the intention to purchase and individual influence, social relationship, and social influence as factors of flow. Enjoyment and self-competence are assumed to be measurement constructs for individual influence, social interaction and self-presentation for social relationship, social norm and perceived critical mass for social influence. Empirical analysis show that enjoyment and self-presentation has significant influence on users' flow while self-competence and social interaction has not. Also social norms and perceived critical mass directly influence intention to purchase items. Theoretical and practical implications are discussed by this results.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.

Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브군의 유체탄성 불안정성)

  • 김범식;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1948-1966
    • /
    • 1991
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as condensers, reboilers and nuclear steam generators. To avoid problems due to excessive vibration, information on vibration excitation in two-phase cross-flow is required. Fluid-elastic instability is discussed in this paper. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with one flexible tube surrounded by rigid tubes. The fluid-elastic instability behavior is different for intermittent flows than for bubbly flows. For bubbly flows, the observed instabilities satisfy the relationship V/fd=K(2.pi..zeta. m/rho. $d^{21}$)$^{0.51}$ in which the minimum instability factor K was found to be 2.3 for bundles of p/d=1.22. The lowest critical velocities for fluid-elastic instability were experienced with parallel-triangular tube bundles. For intermittent flow, the observed instabilities did not follow the forgoing relation-ship. Significantly lower flow velocities were required for instability..

A Study of the Reactive Movement Synchronization for Analysis of Group Flow (그룹 몰입도 판단을 위한 움직임 동기화 연구)

  • Ryu, Joon Mo;Park, Seung-Bo;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.79-94
    • /
    • 2013
  • Recently, the high value added business is steadily growing in the culture and art area. To generated high value from a performance, the satisfaction of audience is necessary. The flow in a critical factor for satisfaction, and it should be induced from audience and measures. To evaluate interest and emotion of audience on contents, producers or investors need a kind of index for the measurement of the flow. But it is neither easy to define the flow quantitatively, nor to collect audience's reaction immediately. The previous studies of the group flow were evaluated by the sum of the average value of each person's reaction. The flow or "good feeling" from each audience was extracted from his face, especially, the change of his (or her) expression and body movement. But it was not easy to handle the large amount of real-time data from each sensor signals. And also it was difficult to set experimental devices, in terms of economic and environmental problems. Because, all participants should have their own personal sensor to check their physical signal. Also each camera should be located in front of their head to catch their looks. Therefore we need more simple system to analyze group flow. This study provides the method for measurement of audiences flow with group synchronization at same time and place. To measure the synchronization, we made real-time processing system using the Differential Image and Group Emotion Analysis (GEA) system. Differential Image was obtained from camera and by the previous frame was subtracted from present frame. So the movement variation on audience's reaction was obtained. And then we developed a program, GEX(Group Emotion Analysis), for flow judgment model. After the measurement of the audience's reaction, the synchronization is divided as Dynamic State Synchronization and Static State Synchronization. The Dynamic State Synchronization accompanies audience's active reaction, while the Static State Synchronization means to movement of audience. The Dynamic State Synchronization can be caused by the audience's surprise action such as scary, creepy or reversal scene. And the Static State Synchronization was triggered by impressed or sad scene. Therefore we showed them several short movies containing various scenes mentioned previously. And these kind of scenes made them sad, clap, and creepy, etc. To check the movement of audience, we defined the critical point, ${\alpha}$and ${\beta}$. Dynamic State Synchronization was meaningful when the movement value was over critical point ${\beta}$, while Static State Synchronization was effective under critical point ${\alpha}$. ${\beta}$ is made by audience' clapping movement of 10 teams in stead of using average number of movement. After checking the reactive movement of audience, the percentage(%) ratio was calculated from the division of "people having reaction" by "total people". Total 37 teams were made in "2012 Seoul DMC Culture Open" and they involved the experiments. First, they followed induction to clap by staff. Second, basic scene for neutralize emotion of audience. Third, flow scene was displayed to audience. Forth, the reversal scene was introduced. And then 24 teams of them were provided with amuse and creepy scenes. And the other 10 teams were exposed with the sad scene. There were clapping and laughing action of audience on the amuse scene with shaking their head or hid with closing eyes. And also the sad or touching scene made them silent. If the results were over about 80%, the group could be judged as the synchronization and the flow were achieved. As a result, the audience showed similar reactions about similar stimulation at same time and place. Once we get an additional normalization and experiment, we can obtain find the flow factor through the synchronization on a much bigger group and this should be useful for planning contents.

Ursodeoxycholic Acid (UDCA) Exerts Anti- Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

  • Chung, Jihwa;Kim, Kyoung Hwa;Lee, Seok Cheol;An, Shung Hyun;Kwon, Kihwan
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.851-858
    • /
    • 2015
  • Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.