• Title/Summary/Keyword: Critical Flow Factor

Search Result 150, Processing Time 0.023 seconds

A Study on the Design of Liquid Flow Control Valves for the Pants and Ships(II) (플랜트 및 선박의 액체용 우량제어밸브 설계에 관한 연구(II))

  • 최순호;배윤영;김태한;한기남;주경인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1995
  • The processing paper has devoted to the theory of the flow equations, the basic derivative procedure, the meaning of a valve flow coefficient $C_v$, the valve Reynolds R$R_{ev}$ and its application for liquid control valves, which applicable under the condition of a non-critical flow and the case of piping geometry factor $F_p$=1.0. However there is no information on the effects of fittings, a critical flow and the flow resistance coefficient of a valve equivalent to that of pipe which is conveniently used in the piping design. Since the piping systems of plants or ships generally contain various fittings such as expanders and reducers due to different size between pipes and valves and there may occur a critical flow, that a mass flowrate is maintained to be constant, due to the pressure drop in a piping when a liquid is initially maintainder ar a saturated temperature or at nearby corresponding to upstream pressure, system designer should have a knowledge of the effect to flow due to fittings and the critical flow phenomenon of a liquid. This study is performed to inform system designers with the critical flow phenomenon of a liquid, a valve resistance coefficient, a valve geometry factor and their applications.

  • PDF

A PROPOSED CORRELATION FOR CRITICAL FLOW RATE OF WATER FLOW

  • KIM, YEON-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.135-138
    • /
    • 2015
  • A new correlation predicting the idealized critical mass-flow rates of water for subcooled and saturated liquid water including two-phase water flow was developed for a wide range of upstream stagnation pressures (e.g., 0.5-20.0 MPa). A choking correction factor dependent on the upstream stagnation pressure and subcooled temperature was introduced into a new correlation, and its values were suggested to satisfy the idealized nozzle data within 10% error ranges. The suggested correlation will be instructive and helpful for related studies and/or engineering works.

Development of Critical Heat Flux Correction Factor for Water under Flow Oscillation Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.242-247
    • /
    • 1996
  • Flow oscillations in boiling channels induces a drastic reduction of the (critical heat flux) CHF or premature burnout. However, most of CHF works and correlations have been focused on stable flow conditions without considering flow oscillation. Therefore to improve the understanding on flow oscillation CHF, in this paper a new CHF correction factor to predict the CHF values under flow oscillation conditions has been developed from 126 experimental data. Also to investigate the dominant factor on flow oscillation CHF parametric trends are analyzed by using the developed correction factor. The overall mean accuracy ratio of the developed correction factor is 1.033 with a standard deviation of 0.195. The RMS errors 0.198. Its assessment shows that the predictions agree well with the experimental data within 25% error bounds.

  • PDF

Effect of critical flow model in MARS-KS code on uncertainty quantification of large break Loss of coolant accident (LBLOCA)

  • Lee, Ilsuk;Oh, Deogyeon;Bang, Youngseog;Kim, Yongchan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.755-763
    • /
    • 2020
  • The critical flow phenomenon has been studied because of its significant effect for design basis accidents in nuclear power plants. Transition points from thermal non-equilibrium to equilibrium are different according to the geometric effect on the critical flow. This study evaluates the uncertainty parameters of the critical flow model for analysis of DBA (Design Basis Accident) with the MARS-KS (Multi-dimensional Analysis for Reactor Safety-KINS Standard) code used as an independent regulatory assessment. The uncertainty of the critical flow model is represented by three parameters including the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio, and their ranges are determined using large-scale Marviken test data. The uncertainty range of the thermal non-equilibrium factor is updated by the MCDA (Model Calibration through Data Assimilation) method. The updated uncertainty range is confirmed using an LBLOCA (Large Break Loss of Coolant Accident) experiment in the LOFT (Loss of Fluid Test) facility. The uncertainty ranges are also used to calculate an LBLOCA of the APR (Advanced Power Reactor) 1400 NPP (Nuclear Power Plants), focusing on the effect of the PCT (Peak Cladding Temperature). The results reveal that break flow is strongly dependent on the degree of the thermal non-equilibrium state in a ruptured pipe with a small L/D ratio. Moreover, this study provides the method to handle the thermal non-equilibrium factor, discharge coefficient, and length to diameter (L/D) ratio in the system code.

Evaluation of Critical Flow Factor in Natural Gas Flow Measurement Using Sonic Nozzle and International Comparison Results (소닉노즐을 이용한 천연가스 유량측정에서 임계유동인자 계산 및 국제비교 결과)

  • Ha, Youngcheol;Her, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.911-917
    • /
    • 1999
  • The sonic nozzle is widely used as reference device for calibrating flowmeters In gas flow measurement and its use requires the Critical Flow Factor(CFF) based on the thermodynamic properties of the gas at the nozzle throat. ISO-9300 provides the calculating method of the factor. But since the CFF from this method show an error over ${\pm}0.5%$ In specific conditions and of ${\pm}0.1{\sim}{\pm}0.2%$ in common Natural Gas(NG) custody transfer condition. this method cannot be applied for gas flow measurement with sonic nozzle. Each research bodies or organizations of the world have joined in order to calculate the CFF more accurately. They have performed these works using their own method and compared the results with each other under the management of ISO. KOGAS have joined those works, because the high-pressure natural gas flow calibration facility of KOGAS will be constructed in late 1999, and then had necessities to calculate a CFF accurately. The calculation method of KOGAS was using the equation of state from AGA-8('94), high accuracy model of ideal gas properties and the solutions of thermodynamic equations. The evaluation results have had a very good consistency within ${\pm}0.05%$ in most NO custody transfer conditions compared to the speed of sound for methane and also shown that the CFF was within ${\pm}0.1%$ compared to the results of other works of the world.

Study on the Critical Nozzle Flow of Hydrogen Gas with Real Gas Effects (실제기체 효과를 고려한 수소기체의 임계노즐 유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3003-3008
    • /
    • 2007
  • Critical nozzle has been frequently employed to measure the flow rate of various gases, but hydrogen gas, especially being at high-pressure condition, was not nearly dealt with the critical nozzle due to treatment danger. According to a few experimental data obtained recently, it was reported that the discharge coefficient of hydrogen gas through the critical nozzle exceeds unity in a specific range of Reynolds number. No detailed explanation on such an unreasonable value was made, but it was vaguely inferred as real gas effects. For the purpose of practical use of high-pressure hydrogen gas, systematic research is required to clarify the critical nozzle flow of high-pressure hydrogen gas. In the present study, a computational fluid dynamics(CFD) method has been applied to predict the critical nozzle flow of high-pressure hydrogen gas. Redlich-Kwong equation of state that take account for the forces and volume of molecules of hydrogen gas were incorporated into the axisymmetric, compressible Navier-Stokes equations. A fully implicit finite volume scheme was used to numerically solve the governing equations. The computational results were validated with some experimental data available. The results show that the coefficient of discharge coefficient is mainly influenced by the compressibility factor and the specific heat ratio, which appear more remarkable as the inlet total pressure of hydrogen gas increases.

  • PDF

Fluidelastic instability of a tube array in two-phase cross-flow considering the effect of tube material

  • Liu, Huantong;Lai, Jiang;Sun, Lei;Li, Pengzhou;Gao, Lixia;Yu, Danping
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2026-2033
    • /
    • 2019
  • Fluidelastic instability of a tube array is a key factor of the security of a nuclear power plant. An unsteady model of the fluidelastic instability of a tube array subjected to two-phase flow was developed to analyze the fluidelastic instability of tube bundles in two-phase flow. Based on this model, a computational program was written to calculate the eigenvalue and the critical velocity of the fluidelastic instability. The unsteady model and the program were verified by comparing with the experimental results reported previously. The influences of void fraction and the tube's material properties on the critical velocity were investigated. Numerical results showed that, with increasing the void fraction of the two-phase flow, the tube array becomes more stable. The results indicate that the critical velocities of the tube array made of stainless are much higher than those of the other two tube arrays within void fraction ranging from 20% to 80%.

An Improved Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling

  • Young Min Kwon;Soon Heung Chang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.552-557
    • /
    • 1997
  • Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer's equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error.

  • PDF

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

The Expression of Galectin-3, a Beta-Galactoside Binding Protein, in Dendritic Cells

  • Kim, Mi-Hyoung;Joo, Hong-Gu
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.105-109
    • /
    • 2005
  • Background: Dendritic cells (DCs) are the most potent APCs (antigen-presenting cells) and playa critical role in immune responses. Galectin-3 is a biological lectin with a beta-galactoside binding affinity. Recently, proteomic analysis revealed the presence of galectin-3 in the exosome of mature DCs. However, the expression and function of galectin-3 in DCs remains unclear yet. Methods: We used bone marrow-derived DCs of mouse and showed the expression of galectin-3 in DCs by using flow cytometry analysis and Western blot analysis. Results: Galectin-3 was determined as single band of 35 kDa in Western blot analysis. Flow cytometry analysis showed the major growth factor for DCs, granulocyte-macrophage colony stimulating factor (GM-CSF) and maturing agents, anti-CD40 monoclonal antibody (mAb) and lipopolysaccharide (LPS) consistently increased the intracellular expression of galectin-3 in DCs compared to medium alone. In addition, DCs treated with maturing agents did marginally express galectin-3 on their surface. Conclusion: This study suggests that galectin-3 in DCs may be regulated by critical factors for DC function.