• Title/Summary/Keyword: Critical Defects

Search Result 339, Processing Time 0.035 seconds

Histometrical evaluation of biphasic calcium phosphate in surgically created 1-wall periodontal intrabony defects in dogs (성견 일벽성 치주 결손부에 이식한 biphasic calcium phosphate의 조직계측학적 평가)

  • Yon, Je-Young;Kim, Dong-Jin;Hong, Sung-Bae;Hong, Ji-Yeon;Kim, Sung-Tae;Lee, Yong-Ho;Cho, Kyu-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Purpose: The aim of this study was to evaluated biphasic calcium phosphate applied in surgically created 1-wall periodontal intrabony defects in dogs by histometrical analysis. Material and Method: Critical sized($4\;mm\;{\times}\;4\;mm$), one wall periodontal intrabony defects were surgically produced at the proximal aspect of mandibular premolars in either right and left jaw quadrants in four canines. The control group was treated with debridement alone, and experimental group was treated with debridement and biphasic calcium phosphate application. The healing processes were histologically and histometrically observed after 8 weeks. Results: In biphasic calcium phosphate group, more new bone and cementum formation, less epithelium and connective tissue attachment were observed compared to other groups. But there was no statistical significance. Conclusion: Though the statistically significant difference could not be found, it seemed that there was more new bone and cementum formation with applying biphasic calcium phosphate in 1 wall intrabony defects in dogs by preventing junctional epithelium migration.

Analysis of Electrical Characteristics due to Deep Level Defects in 4H-SiC PiN Diodes (4H-SiC PiN 다이오드의 깊은 준위 결함에 따른 전기적 특성 분석)

  • Tae-Hee Lee;Se-Rim Park;Ye-Jin Kim;Seung-Hyun Park;Il Ryong Kim;Min Kyu Kim;Byeong Cheol Lim;Sang-Mo Koo
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.111-115
    • /
    • 2024
  • Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.

Mitophagy: Therapeutic Potentials for Liver Disease and Beyond

  • Lee, Sooyeon;Kim, Jae-Sung
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy.

Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism

  • Jeong, Seung Min;Haigis, Marcia C.
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.750-758
    • /
    • 2015
  • Genomic instability and altered metabolism are key features of most cancers. Recent studies suggest that metabolic reprogramming is part of a systematic response to cellular DNA damage. Thus, defining the molecules that fine-tune metabolism in response to DNA damage will enhance our understanding of molecular mechanisms of tumorigenesis and have profound implications for the development of strategies for cancer therapy. Sirtuins have been established as critical regulators in cellular homeostasis and physiology. Here, we review the emerging data revealing a pivotal function of sirtuins in genome maintenance and cell metabolism, and highlight current advances about the phenotypic consequences of defects in these critical regulators in tumorigenesis. While many questions should be addressed about the regulation and context-dependent functions of sirtuins, it appears clear that sirtuins may provide a promising, exciting new avenue for cancer therapy.

A Field Study on the Maintainability of Mission Critical Object-Oriented Systems (기간계 객체지향 시스템의 유지보수성에 관한 현장연구)

  • Lim Joa Sang;Jeong Seung Ryul
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.3
    • /
    • pp.147-159
    • /
    • 2004
  • Empirical evidence on the maintainability of object-oriented systems is far from conclusive, partly due to lack of representativeness of the subjects and systems used in the study. The present research empirically examined this issue with the systems that are mission-critical. currently operational and maintained by professionals. It was found that the 00 group appeared to consume less time while maintaining more amount of software artifacts than the NOO counterpart. This economical utilization of time appeared evident regardless of software development life cycle. This was due to the usefulness of UML for impact analysis which contributed to effective comprehension and communication. Insufficient design specifications led to ambiguity and costly defects in transferring design solutions to development. Also. the encapsulation of 00 seemed to reduce mental loads at maintenance tasks and improved code reuse. However, the number of files to manage increased and thus. dependency management is required for the 00 systems.

  • PDF

A study regarding an TP(Thinking process) Application Plan for selecting the CTQ(Critical To Quality) of 6 Sigma (6시그마의 CTQ(Critical To Quality)선정을 위한 TP(Thinking Process) 활용 방안에 관한 연구)

  • Lee Jeong Seop;Seo Jang Hun;Park Myeong Gyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.81-85
    • /
    • 2004
  • Companies adopted a program called Six Sigma, in order to make fundamental changes in the way the company operated to fulfill customers' expectations. Six Sigma reduces the occurrence of defects. This approach derives the overall process of selection the right projects based on their potential to improve performance metrics and selection and training the right people to get the business results. However, in the course of Six Sigma process steps, companies are in the face of problems. This study is to solve the problems using TP(Thinking Process) of TOC(Theory of Constraints). TOC is methodology for solving key problem in system which is called Constraints. Nowadays, its application is going to be wide and its concept is being implemented. In this paper, it is showed possibility of application TOC to Six Sigma.

  • PDF

Flaw Detection in LCD Manufacturing Using GAN-based Data Augmentation

  • Jingyi Li;Yan Li;Zuyu Zhang;Byeongseok Shin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.124-125
    • /
    • 2023
  • Defect detection during liquid crystal display (LCD) manufacturing has always been a critical challenge. This study aims to address this issue by proposing a data augmentation method based on generative adversarial networks (GAN) to improve defect identification accuracy in LCD production. By leveraging synthetically generated image data from GAN, we effectively augment the original dataset to make it more representative and diverse. This data augmentation strategy enhances the model's generalization capability and robustness on real-world data. Compared to traditional data augmentation techniques, the synthetic data from GAN are more realistic, diverse and broadly distributed. Experimental results demonstrate that training models with GAN-generated data combined with the original dataset significantly improves the detection accuracy of critical defects in LCD manufacturing, compared to using the original dataset alone. This study provides an effective data augmentation approach for intelligent quality control in LCD production.

Development and Characterization of High Temperature Superconducting Wire for Superconducting Cable System (초전도 케이블용 고온초전도 선재의 개발 및 특성평가)

  • Mean, Byoungjean;Lee, Jae-Hun;Kim, Young-Soon;Lee, Hunju;Moon, Seung-Hyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.151-156
    • /
    • 2015
  • In order to improve the properties of high-temperature superconducting wire for superconducting cable system, we optimized the electro-polishing (EP), ion-beam assisted deposition (IBAD), superconducting (SC) layer, and baking (heat) treatment. The buffer layer was deposited on electro-polished substrate with RMS roughness ($R_{RMS}$) less than 5 nm. The IBAD process was carried out at $V_{beam}$: 1100 V and $V_{accel}$: 850 V that resulted in highly crystalline film of $LaMnO_3$. Chemical composition of SC layer is key to higher critical current, and we found that composition can be determined by surface color of SC layer. We adopt a proprietary contorl system based on RGB analysis of the surface and achieved critical current of 150 A/4 mm-width. The proposed baking treatment resulted in decreasing of about 10% of fraction defects.

Bone Healing Properties of Autoclaved Autogenous Bone Grafts Incorporating Recombinant Human Bone Morphogenetic Protein-2 and Comparison of Two Delivery Systems in a Segmental Rabbit Radius Defect

  • Choi, Eun Joo;Kang, Sang-Hoon;Kwon, Hyun-Jin;Cho, Sung-Won;Kim, Hyung Jun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.94-102
    • /
    • 2014
  • Purpose: This study aims to validate the effect of autoclaved autogenous bone (AAB), incorporating Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2), on critical-sized, segmental radius defects in rabbits. Delivery systems using absorbable collagen sponge (ACS) and fibrin glue (FG) were also evaluated. Methods: Radius defects were made in 12 New Zealand white rabbits. After autoclaving, the resected bone was reinserted and fixed. The animals were classified into three groups: only AAB reinserted (group 1, control), and AAB and ErhBMP-2 inserted using an ACS (group 2) or FG (group 3) as a carrier. Animals were sacrificed six or 12 weeks after surgery. Specimens were evaluated using radiology and histology. Results: Micro-computed tomography images showed the best bony union in group 2 at six and 12 weeks after operation. Quantitative analysis showed all indices except trabecular thickness were the highest in group 2 and the lowest in group 1 at twelve weeks. Histologic results showed the greatest bony union between AAB and radial bone at twelve weeks, indicating the highest degree of engraftment. Conclusion: ErhBMP-2 increases bony healing when applied on AAB graft sites. In addition, the ACS was reconfirmed as a useful delivery system for ErhBMP-2.