• Title/Summary/Keyword: Cretaceous volcanic rocks

Search Result 141, Processing Time 0.022 seconds

The Neoproterozoic and Cretaceous Tectonic Evolution and Important Geoheritages in the Gogunsan Archipelago (고군산군도 지역의 신원생대 및 백악기 지구조 진화과정과 중요 지질유산)

  • Oh, Chang Whan;Kim, Won Jeong;Lee, Seung Hwan;Lee, Bo Young;Kim, Jin Seok;Choi, Seung Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.251-277
    • /
    • 2019
  • The Gogunsan Archipelago is composed of two island groups; the first group includes Mal-do, Myeong-do, Gwangdae-do, and Bangchuk-do islands consisting of Neoproterozoic rocks, and the second group includes Yami-do, Sinsi-do, Muneo-do, Jangja-do, and Seonyu-do islands consisting of Cretaceous rocks. The first group mainly consists of the Bangchuk formation which can be divided into two layers; the lower layer was more deformed than the upper layer. The former was intruded by mafic and felsic volcanic rocks formed in the volcanic arc tectonic setting 930-890 Ma and the latter was deposited ca. 825-800 Ma. In these islands, large scale folds with east-west fold axes were beautifully formed; the Maldo island fold was designated as natural monument and large scale beautiful chevron fold was developed on the Gwangdae-do island. In addition, there are unique zebra-shaped outcrop formed by a mixing of basic and acidic magma and Independent Gate shaped outcrop formed by coastal erosion. On the other hand, the Yami-do, Sinsi-do, Muneo-do, Jangja-do and Seonyu-do islands consist of 92-91Ma Cretaceous volcanic rocks and, in Sinsi-do island, the Nanshan formation deposited ca. 92 Ma. These Cretaceous volcanic rocks formed by melting of the continental crust by the heat supplied from the uplifting mantle due to the extension caused by a retreat of subducting ocean slab. Yami-do and Sinsi-do islands are composed of rhyolite. In Yami-do island, bands with vertical joint formed by cooling of the bottom part of the lava, are shown. In Sinsi-do island, large-scale vertical joints formed by cooling of lava flow, were developed. The Jangja-bong of Jangja-do island and Mangju-bong of Seonyu-do island are composed of brecciated rhyolite and formed a ring shaped archipelago contributing to the development of marine culture by providing natural harbor condition. They also provide beautiful views including 'Seonyu 8 views' along with other islands. As mentioned above, the Gogunsan archipelago is rich in geoheritages and associated cultural and historical resources, making it worth as a National Geopark.

Petrological Study on the Bulgugsa Acidic Igneous Rocks in Busan Area (부산지역(釜山地域)의 불국사산성화성암류(佛國寺酸性火成岩類)의 암석학적(岩石學的) 연구(硏究))

  • Cha, Moon-Sung
    • Economic and Environmental Geology
    • /
    • v.9 no.2
    • /
    • pp.85-106
    • /
    • 1976
  • The Bulgugsa acidic igneous rocks of the late Cretaceous age are largely distributed in Busan area, which is located in the southeastern corner of the Korean Peninsula. These igneous rocks comprise in ascending order, felsite, dacitic-rhyolitic welded tuffs, granite porphyry and granitic rocks. The former three members represent the early phase of volcanic activities, so that they are named as Jangsan volcanic rocks. The granitic rocks consist of granodiorite, hornblende biotite granite, Kumjongsan granite, fine grained granite, and Daebyen granite, represent the late phase of igneous activities. The Kumjongsan grainte, the largest pluton of the granitic mass, emplaced between two great vertical faults trending NNE. New chemical analyses of 33 rock samples of these acidic rocks are given. Their chemical compositions are generally similar to those of the late Mesozoic acidic igneous rocks of the northern Ashio mountains, and C-Zone granite group of the Ogcheon geosyncline, with their characteristic variation trends of several oxides. Their chemical compositions also show that $Al_2O_3$ is high value, and differentiation index is high, too. Systematically developing joints in Kumjungsan granite are divisible into two types at least. One is the NS-N $20^{\circ}E$ trendirig, $85^{\circ}{\sim}90^{\circ}$ dipping type of joint system which coincides with the trends of distribution of the granite mass and the dikes intruding this granite. Joints of this type may be cooling joints generated as tension cracks. The other is the $N60^{\circ}{\sim}70^{\circ}W$ or $N40^{\circ}{\sim}60^{\circ}E$ trending type of joint systems. It is considered that. joints belonging to this type may be shear joint occurring under the state of south-north tectonic couple acting at the east and west side of the granite mass. Igneous activities of the the Bulgugsa acidic igneous rocks in Busan area was taken place as. follows, formation of the magma reservoir, eruption and intrusion of felsite, consolidation of vents. and increasing vapor pressure in magma reservoir, eruption of pyroclastic flows, caldera collapse, intrusion of granite porphyry, and intrusion of granitic rocks at the latest stage.

  • PDF

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Gusi Mine, Southern Korea (전남 해남지역 구시광상의 화산활동에 수반된 열수변질작용 및 생성환경)

  • Moon, Hi-Soo;Roh, Yul;Kim, In-Joon;Song, Yungoo;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • Gusi pyrophyllite deposit is located in the Haenam volcanic field in the southwestern part of the Korea Peninsula. This area is known for the occurrences of pyrophyllite, alunite and dickite. This volcanic field is composed of andesite, rhyolite and pyroclastic rocks of late Cretaceous age The pyroclastic rocks are hydrothermally altered to pyrophyllite and kaolin minerals forming the Gusi deposits. The hydrothermally altered rock can be classified into the following zones on the basis of their mineral assemblages: quartz, pyrophyllite, dickite and illite-smectite zones, from the centre to the margins of the alteration mass. Such mineral assemblages indicate that the country rocks, most of which are the lower Jagguri Tuff, were altered by strongly acidic hydrothermal solutions with high aqueous silica and potassium activity and that the formation temperature of pyrophyllite is higher than $265^{\circ}C$. The mechanism of the hydrothermal alteration is considered to be related to felsic magmatism.

  • PDF

The study on the Igneous Activity in the Southeastern Zone(SE-zone) of the Ogcheon Geosynclinal Belt,Korea(III) (with the Igneous Activity between Naju and Namchang Area) (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(III)(나주(羅州)-남창지역(南倉地域)을 중심(中心)으로))

  • Kim, Yong-Jun;Park, Young-Seog;Choo, Seung-Hwan;Oh, Min-Soo;Park, Jay-Bong
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.261-276
    • /
    • 1991
  • The main aspect of this study are to clarify igneous activity of igneous rocks, which is a member of various intrusives and volcanics exposed in Naju-Namchang area of southern central zone of Ogcheon Geosynclinal Belt, southern part of Youngdong-Kwangju depression zone of tectonic provinces in Korea. Naju-Namchang area are subdivided into three rock belts based on occuring of Cretaceous granites. Three rock belts consist of foliated granites, Jurassic granites and Cretaceous granites in central granitic rock belt (C-C), and acidic tuff and lavas in northwest volcanic rock belt(C-NW) and southeast volcanic rock belt(C-SE). Chemical composition of these igneous rocks show mostly similar trend to the Daly's values on Harker diagram and correspond to VAG + Syn-COLG region on Pearce's discrimination diagram. These igneous rocks vary wide range in total REE amount(37.4-221.3ppm) characterized by enriched LREE content and steep negative slope in Eu(-) anomaly. It is concluded each synchronous granites which composed of serveral rock facies is considered to formed by differentiation of co-magma at continental margin, and igneous activity of study area are two more Pre-Cambrian Orogenies, Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

Overview of Epithermal Gold-Silver Mineralization, Korea:

  • Park, Seon-Gyu;Ryu, In-Chang;So, Chil-Sup;Wee, Soo-Meen;Kim, Chang-Seong;Park, Sang-Joon;Kim, Sahng-Yup
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.7-14
    • /
    • 2003
  • The precious-meta] mineralization of epithermal type in the Korean Peninsula, which is spread over a broader range of ca. 110 to 60 Ma with a major population between 90 and 70 Ma, mainly occurred along the NE-trending major strike-slip fault systems (i.e., the Gongju and Gwangju ones) that commonly include volcano-tectonic depressions and calderas. The occurrence of epithermal mineralization during Late Cretaceous clearly indicates that the geologic setting of the Korean Peninsula changed to the favorable depth of ore formation with very shallow-crustal environments (〈1.0 kb) accompanied with gold-silver (-base-meta]) mineralization. Epithermal gold-silver deposits in Korea are primarily distinguished as sediment-dominant and volcanic-dominant basins by using criteria of varying alteration, ore and gangue mineralogy deposited by the interaction of different ore-forming fluids with host rocks and meteoric waters. These differences between the central and southern portions are causally linked to the tectonic evolution of the Peninsula during the Cretaceous time. In the Early Cretaceous, the sinistral strike-slip movements due to the oblique subduction of the Izanagi Plate resulted in the Gongju and Gwangju fault systems in the central portion of the Korean Peninsula, which was accompanied with a number of sediment-dominant basins formed along these faults. During the Late Cretaceous, the mode of convergence of the Izanagi Plate changed to northwesteward so that orthogonal convergence occurred with a calc-alkaline volcanism. As results, volcanic-dominant basins were developed in the southern portion of the Peninsula, accompanied with volcano-tectonic depressions and caldera-related fractures. The magmatism and related fractures during Late Cretaceous may play an important role in the formation of geothermal systems. Thus, such fault zones may be favorable environments for veining emplacement that is closely related to the precious-metal mineralization of epithermal type in the Korean Peninsula.

  • PDF

Paleomagnetism, Stratigraphy and Geologic Structure of the Tertiary Pohang and Changgi Basins; K-Ar Ages for the Volcanic Rocks (포항(浦項) 및 장기분지(盆地)에 대한 고지자기(古地磁氣), 층서(層序) 및 구조연구(構造硏究); 화산암류(火山岩類)의 K-Ar 연대(年代))

  • Lee, Hyun Koo;Moon, Hi-Soo;Min, Kyung Duck;Kim, In-Soo;Yun, Hyesu;Itaya, Tetsumaru
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.337-349
    • /
    • 1992
  • The Tertiary basins in Korea have widely been studied by numerous researchers producing individual results in sedimentology, paleontology, stratigraphy, volcanic petrology and structural geology, but interdisciplinary studies, inter-basin analysis and basin-forming process have not been carried out yet. Major work of this study is to elucidate evidences obtained from different parts of a basin as well as different Tertiary basins (Pohang, Changgi, Eoil, Haseo and Ulsan basins) in order to build up the correlation between the basins, and an overall picture of the basin architecture and evolution in Korea. According to the paleontologic evidences the geologic age of the Pohang marine basin is dated to be late Lower Miocence to Middle Miocene, whereas other non-marine basins are older as being either Early Miocene or Oligocene(Lee, 1975, 1978: Bong, 1984: Chun, 1982: Choi et al., 1984: Yun et al., 1990: Yoon, 1982). However, detailed ages of the Tertiary sediments, and their correlations in a basin and between basins are still controversial, since the basins are separated from each other, sedimentary sequence is disturbed and intruded by voncanic rocks, and non-marine sediments are not fossiliferous to be correlated. Therefore, in this work radiometric, magnetostratigraphic, and biostratigraphic data was integrated for the refinement of chronostratigraphy and synopsis of stratigraphy of Tertiary basins of Korea. A total of 21 samples including 10 basaltic, 2 porphyritic, and 9 andesitic rocks from 4 basins were collected for the K-Ar dating of whole rock method. The obtained age can be grouped as follows: $14.8{\pm}0.4{\sim}15.2{\pm}0.4Ma$, $19.9{\pm}0.5{\sim}22.1{\pm}0.7Ma$, $18.0{\pm}1.1{\sim}20.4+0.5Ma$, and $14.6{\pm}0.7{\sim}21.1{\pm}0.5Ma$. Stratigraphically they mostly fall into the range of Lower Miocene to Mid Miocene. The oldest volcanic rock recorded is a basalt (911213-6) with the age of $22.05{\pm}0.67Ma$ near Sangjeong-ri in the Changgi (or Janggi) basin and presumed to be formed in the Early Miocene, when Changgi Conglomerate began to deposit. The youngest one (911214-9) is a basalt of $14.64{\pm}0.66Ma$ in the Haseo basin. This means the intrusive and extrusive rocks are not a product of sudden voncanic activity of short duration as previously accepted but of successive processes lasting relatively long period of 8 or 9 Ma. The radiometric age of the volcanic rocks is not randomly distributed but varies systematically with basins and localities. It becomes generlly younger to the south, namely from the Changgi basin to the Haseo basin. The rocks in the Changgi basin are dated to be from $19.92{\pm}0.47$ to $22.05{\pm}0.67Ma$. With exception of only one locality in the Geumgwangdong they all formed before 20 Ma B.P. The Eoil basalt by Tateiwa in the Eoil basin are dated to be from $20.44{\pm}0.47$ to $18.35{\pm}0.62Ma$ and they are younger than those in the Changgi basin by 2~4 Ma. Specifically, basaltic rocks in the sedimentary and voncanic sequences of the Eoil basin can be well compared to the sequence of associated sedimentary rocks. Generally they become younger to the stratigraphically upper part. Among the basin, the Haseo basin is characterized by the youngest volcanic rocks. The basalt (911214-7) which crops out in Jeongja-ri, Gangdong-myon, Ulsan-gun is $16.22{\pm}0.75Ma$ and the other one (911214-9) in coastal area, Jujon-dong, Ulsan is $14.64{\pm}0.66Ma$ old. The radiometric data are positively collaborated with the results of paleomagnetic study, pull-apart basin model and East Sea spreading theory. Especially, the successively changing age of Eoil basalts are in accordance with successively changing degree of rotation. In detail, following results are discussed. Firstly, the porphyritic rocks previously known as Cretaceous basement (911213-2, 911214-1) show the age of $43.73{\pm}1.05$$49.58{\pm}1.13Ma$(Eocene) confirms the results of Jin et al. (1988). This means sequential volcanic activity from Cretaceous up to Lower Tertiary. Secondly, intrusive andesitic rocks in the Pohang basin, which are dated to be $21.8{\pm}2.8Ma$ (Jin et al., 1988) are found out to be 15 Ma old in coincindence with the age of host strata of 16.5 Ma. Thirdly, The Quaternary basalt (911213-5 and 911213-6) of Tateiwa(1924) is not homogeneous regarding formation age and petrological characteristics. The basalt in the Changgi basin show the age of $19.92{\pm}0.47$ and $22.05{\pm}0.67$ (Miocene). The basalt (911213-8) in Sangjond-ri, which intruded Nultaeri Trachytic Tuff is dated to be $20.55{\pm}0.50Ma$, which means Changgi Group is older than this age. The Yeonil Basalt, which Tateiwa described as Quaternary one shows different age ranging from Lower Miocene to Upper Miocene(cf. Jin et al., 1988: sample no. 93-33: $10.20{\pm}0.30Ma$). Therefore, the Yeonil Quarterary basalt should be revised and divided into different geologic epochs. Fourthly, Yeonil basalt of Tateiwa (1926) in the Eoil basin is correlated to the Yeonil basalt in the Changgi basin. Yoon (1989) intergrated both basalts as Eoil basaltic andesitic volcanic rocks or Eoil basalt (Yoon et al., 1991), and placed uppermost unit of the Changgi Group. As mentioned above the so-called Quarternary basalt in the Eoil basin are not extruded or intruaed simultaneously, but differentiatedly (14 Ma~25 Ma) so that they can not be classified as one unit. Fifthly, the Yongdong-ri formation of the Pomgogri Group is intruded by the Eoil basalt (911214-3) of 18.35~0.62 Ma age. Therefore, the deposition of the Pomgogri Group is completed before this age. Referring petrological characteristics, occurences, paleomagnetic data, and relationship to other Eoil basalts, it is most provable that this basalt is younger than two others. That means the Pomgogri Group is underlain by the Changgi Group. Sixthly, mineral composition of the basalts and andesitic rocks from the 4 basins show different ground mass and phenocryst. In volcanic rocks in the Pohang basin, phenocrysts are pyroxene and a small amount of biotite. Those of the Changgi basin is predominant by Labradorite, in the Eoil by bytownite-anorthite and a small amount pyroxene.

  • PDF

The Study on the Quality of Natural Mineral Water (먹는 샘물 수질에 관한 연구)

  • Im, HyunChul
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.41-41
    • /
    • 2004
  • 56 samples were analyzed to understand water quality of the natural mineral water of Korea. The geology according to each sample location is grouped into Precambrian metamorphic rocks, Okcheon metamorphic rocks, Jurassic granite, Cretaceous granite, and Jeju volcanic rocks. Average EC and pH values of the water is 150 μS/cm and 7.3, respectively and water type of the water is mainly Ca-Na-HCO3. Fundamentally, there still is no problem for the water quality of the natural mineral water. Nevertheless, nitrate was detected and arsenic and fluoride contents are near the drinking water standards, it is highly necessary to manage the water quality by installment of casing and grouting or by development of another production well.

  • PDF

SHRIMP U-Pb Zircon Geochronology and Geochemistry of Drill Cores from the Pohang Basin (포항분지 시추 코어시료의 SHRIMP U-Pb 저어콘 연대 및 지구화학)

  • Lee, Tae-Ho;Yi, Keewook;Cheong, Chang-Sik;Jeong, Youn-Joong;Kim, Namhoon;Kim, Myoung-Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.167-185
    • /
    • 2014
  • SHRIMP zircon U-Pb ages and major element and Sr-Nd isotopic compositions were determined for drill cores (374-3390 m in depth) recovered from three boreholes in the Pohonag basin, southeastern Korea. Shallow-seated volcanic rocks and underlain plutonic rocks were geochemically classified as rhyolite and gabbro-granite, respectively. They showed high-K calc-alkaline trends on the $K_2O-SiO_2$ and AFM diagrams. Zircons from volcanic rocks of borehole PB-1 yielded concordia ages of $66.84{\pm}0.66Ma$ (n=12, MSWD=0.02) and $66.52{\pm}0.55Ma$ (n=12, MSWD=0.46). Zircons from volcanic rocks of borehole PB-2 gave a concordia age of $71.34{\pm}0.85Ma$ (n=11, MSWD=0.79) and a weighted mean $^{206}Pb/^{238}U$ ages of $49.40{\pm}0.37Ma$ (n=11, MSWD=1.9). On the other hand, zircons from plutonic rocks of borehole PB-3 yielded weighted mean $^{206}Pb/^{238}U$ ages of $262.4{\pm}3.6Ma$ (n=21, MSWD=4.5), $252.4{\pm}3.6Ma$ (n=8, MSWD=1.9) and $261.8{\pm}1.5Ma$ (n=31, MSWD=1.3). Detrital zircons from the sedimentary strata overlain the volcanic rocks showed a wide age span from Neoproterozoic to Cenozoic, with the youngest population corresponding to $21.89{\pm}1.1Ma$ (n=15, MSWD=0.04) and $21.68{\pm}1.2Ma$ (n=10, MSWD=19). These dating results indicate that the basement of the Pohang basin is composed of Late Permian plutonic rocks and overlain Late Cretaceous to Eocene volcanic sequences. Miocene sediments were deposited in the uppermost part of the basin, possibly associated with the opening of the East Sea. The Sr-Nd isotopic compositions of the Permian plutonic rocks were comparable with those reported from Permian-Triassic granitoids in the Yeongdeok area, northern Gyeongsang basin. They may have been recycled into parts of the Cretaceous-Paleogene magmatic rocks within the Gyeongsang basin.

K-Ar Ages of Dinosaur Egg Nest found in Cretaceous Formation of Aphaedo, Jeollanam-do, Korea (전라남도 압해도 백악기층에서 발견된 공룡알 둥지의 K-Ar 연대)

  • Rhee, Chan-Young;Kim, Bo-Seong;Kim, Myung-Gee;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.33 no.4
    • /
    • pp.329-336
    • /
    • 2012
  • In September 2009, a perfectly preserved fossil of a dinosaur egg nest was discovered in the Cretaceous formations of the Aphaedo area in Shinan, Jeollanam-do, South Korea. In order to estimate the age of dinosaur eggshells and the depositional age of the Cretaceous sediments in Aphaedo area, a whole-rock K-Ar dating was carried out on volcanic pebbles showing a sedimentary structure contemporaneous with the Aphaedo strata, acidic tuffs overlaying the strata conformably, and acidic dike rocks intrude to both of them. Volcanic rocks observed in the strata are 3-20 cm in diameter as pebbles found in lenticular conglomerate and pebble bearing mudstone strata. K-Ar whole-rock dating was performed on six different volcanic pebbles which show a sedimentary structure contemporaneous with the dinosaur egg nest contained in the strata, and all samples show Late Cretaceous ages: Cenomanian ($97.6{\pm}1.9$Ma), Coniacian ($87.6{\pm}1.7$ Ma), Santonian ($84.5{\pm}1.7$Ma) or Campanian ($82.5{\pm}1.6$, $77.3{\pm}1.5$, $75.7{\pm}1.5$ Ma). The K-Ar whole-rock age of acidic tuffs overlaying the Cretaceous formation conformably was estimated to be Campanian ($79.2{\pm}1.6$ or $77.3{\pm}1.5$Ma), when the dating was carried out under the same conditions. The acidic dike intruding both Cretaceous formation and acidic tuff showed a K-Ar whole-rock age of $70.9{\pm}1.4$Ma (Campanian). Therefore, the depositional age of the Cretaceous formation in the Aphaedo area and the time when dinosaurs lived in the study area are considered to be 77-83 Ma. Such results indicate that the ages of dinosaur eggshells from Aphaedo area can be correlated with the ages of the Seonso Formation (81Ma) with dinosaur egg nest fossils and the Uhangri Formation (79-81Ma) with dinosaur, pterosaur and web-footed bird tracks.

A Study on Genesis of Alunite Deposits of Jeonnam Area (전남지역(全南地域) 명반석광상(明礬石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Moon, He Soo
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.183-201
    • /
    • 1975
  • The south and southwestern parts of Jeonra-namdo has been known as an alunite province in Korea. The alunite deposits investigated for the present study are Okmaisan, Seongsam, Bugog, Gasado south, Gasado north, Jangsando, Dogcheon and Jungyongri deposits. The main purpose of this study is to depict the genetical origin of the alunite deposits. The rocks distributed in the areas mentioned above consist chiefly of rhyolitic tuff, breccia tuff and andesitic tuff of Cretaceous age which represent different episodes of volcanic activities during Cretaceous epoch. The attitude of bedding of the tuffaceous rocks varies from place to place but generally dips very gently. The alunite deposits are embedded mostly in the rhyolitic tuff so that they appear as layered deposits, this occurrence may be the result of stratigraphic and lithologic controls. The result of this study can be summarized as below. The mineral sequence studied by the mineral paragenesis and the result of the spectrograph anlyses is such that (1) alunite was formed at first and pyrophyllite was nearly contemporaneous with alunite but pyrophyllite formation can be recognized as a secondary mineralization products, (2) kaoline was succeeded to form later and hematite finally deposited, and (3) pyrite was deposited from the begining to the end of the above mineralization period. The compositional change of host rocks is such that CaO, $SiO_2$ and $Na_2O$ were largely removed from the parent rocks and some $Al_2O_3$ and $SO_3$ were transported by the solution so as to enrich the rocks. The sequencial process of such mineralization has resulted in forming those distinguish mineral zones; alunite, kaoline, pyrophyllite, silicifide and sulphide zone which manifest irregular shape. These deposits were formed by hydrothermal solution which was possibly low temperature and contained sulphuric acid originated from $H_2S$ and $SO_2$ gases.

  • PDF