• Title/Summary/Keyword: Cretaceous sedimentary rock

Search Result 69, Processing Time 0.026 seconds

Petrologic Study on the so-called Schistose Granites in the northeastern part of the Kwangju (광주(光州) 북동부(北東部)에 분포(分布)하는 소위(所謂) 편상화강암(片狀花崗岩)에 관(關)한 암석학적(岩石學的) 연구(硏究))

  • Kim, Jeong Bin;Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.197-214
    • /
    • 1984
  • This studg is to clarify intrusion sequence and petrogenetic processes of the so-called schistose granites in the northeastheastern part of the Kwangju, Chonnam Province. The study area is composed of the Pre-cambrian and Unknown age metasediments, the Unknown age schistose granites and basic plutons, the Cretaceous sedimentary and volcanic rocks, and the Cretaceous Ogang-ri granite and dykes. The schistose granites of the study area is divided into three rock units based on relative intrusion age, mineralogical constituent and texture;SoonChang schistose granite, two mica granite and Sam-o-ri schistose granite. The schistose granites intruded into metasediments, are intruded by Ogang-ri granite and dikes, and overlain by the Cretaceous sedimentary and volcanic rocks. The schistose granites vary widely in composition (granite-granodiorite-tonalite) and content of porphyroblastic feldspar Caugen and rectangular shaped). The foliation of schistose granites shows similar trend to the Shinian direction. In especially, strong foliation reflects dynamic metamorphism by mortar texture and much content of well oriented biotite. These schistose granites are characterized by its gray feldspar porphyroblasts. This feldspar is considered to be formed by potassic metasomatism and assimilation of pelitic metasediments of unexposed highly metamorphosed rocks deeply buried under the level of the schistose granites emplacement. Variation of silica versus oxides of major elements shows that the schistose granites are similar to the trend of Daly's average basalt-andesite-dacite-rhyolite which shows the trend of the fractional crystallization of magma. AMF diagram shows that the schistose granite is corresponded to contaminated differentiation products such as Lower California batholith and Cascade lava. These evidence suggest that the schistose granite is a series of differentiation products formed by fractional crystallization that associated with srtongly contamination and potassic metasomatism.

  • PDF

Paleomagnetic and Rock-Magnetic Studies of Cretaceous Sedimentary Rocks in the Poongam Basin (풍암분지에 분포하는 백악기 퇴적암류에 대한 고지자기 및 암석자기 연구)

  • Park, Yong-Hee;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.195-206
    • /
    • 2004
  • Paleomagnetic and rock-magnetic investigations have been carried out for the Cretaceous sedimentary rocks in the Poongam (also called Gapcheon) Basin in the eastern South Korea. A total of 128 independently oriented core samples were drilled from 13 sites for this study. The mean direction after bedding correction (D/I=353.1$^{\circ}$/55.6$^{\circ}$, k=21.5, =$$\alpha$_{95}$=10.1$^{\circ}$) is more dispersed than the mean direction before bedding correction (D/I=10.5$^{\circ}$/56.9$^{\circ}$, k=73.9, =$$\alpha$_{95}$=5.3$^{\circ}$), and the stepwise unfolding of the characteristic remanent magnetization (ChRM) reveals a maximum value of k at 20% unfolding. Secondary authigenic hematite accompanied by altered clays such as chlorite was identified by the electron microscope observations. These results collectively imply that the ChRM is remagnetized due to the formation of the secondary authigenic hematite after tilting of the strata. It is interpreted that the chemical remagnetization was connected to the introduction of mixed magmatic-meteoric fluids, which formed hydrothermal vein deposits near the study area. The paleomagnetic pole position (214.3$^{\circ}$E, 81.6$^{\circ}$N, =$A_{95}$=7.4$^{\circ}$) of the Cretaceous sedimentary rocks calculated from remagnetized directions is close to those of the Late Cretaceous and Tertiary poles of the Korean Peninsula. This Late Cretaceous to Tertiary remagnetization seems to be widespread over the Okcheon Belt because the chemical remagnetization is previously reported to be found in rocks from other Cretaceous small basins (e.g., Eumseong, Gongju and Youngdong basins) along the Okcheon Belt and some Paleozoic strata from the Okcheon unmetamorphosed zone.

A Study on Slope Stability Analysis of Sedimentary Rock using Interfaces Module of FLAC (FLAC의 Interfaces Module을 이용한 퇴적암 사면의 안정성 해석에 관한 연구)

  • 오대열;정교철
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.345-360
    • /
    • 2002
  • This study was for analysing the sedimentary rock slope stability and providing the reinforcement method that can heighten stability. The study area consists of Cretaceous basalt or basaltic tuff belonging to Hak-Bong Basalt Formation in Ha-Yang Group. Nature of geological structure confirmed in this area ars bedding, joint and fault. Majority of geological structure that affect most relationship rock slope stability is bedding. It is shown that dip direction is 120~160/15~25. In other structure, joint sets are shown that dip direction of set 1 is 310~330/65~85 and set 2 is 230~250/70~85. Joint set 3 shows above 85$^{\circ}$ high angle on NE trend although do not show clear. Stability analysis about rock slope used kinematic analysis, limit equilibrium method and FLAC by numerical analysis method. FLAC is continuum model that use Fintie Defferentce Method, but could use Interfaces Module and get discrete model's analysis effect such as UDEC.

Petrlolgy of the Cretaceous Volcanic Rocks in Cheonsungsan Area, Korea. (천성산 백악기 화산암류의 암석학적 연구(1))

  • 김진섭;선종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.108-120
    • /
    • 1996
  • This study reports petrography and geochemical characteristics of the Cretaceous volcanic rocks that are distributed in the vicinity of the Cheonsungsan area, Yangsan-Gun, Gyeongsangnam-Do. The Cretaceous volcanic rocks composed of andesitic rocks, Wonhyosan tuff, Cheonsungsan tuff in ascending order. Sedimentary rock is the basement in the study area cofered with volcanic rocks. These volcanic rocks are Wonhyosan tuff and Cheonsungsan tuff that represented the early phase of the Bulgugsa igneous activity. Wonhyosan tuff are classified into dacite tuff and dacite welded tuff based on the rock texture and their mineral composition. They are covered with Cheonsungsan tuff. Dacite tuff composed of lithic lapilli ash-flow tuff and vitric ash-flow tuff. Most dacite welded tuff are lapilli ash-flow tuff. Cheonsungsan tuff overlying the Wonhyosan tuff consists of rhyolite tuff and rhyolite welded tuff. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic and sedimentary rocks. Rhyolite welded tuff is distinguishe from rhyolite tuff by is typical eelded fabrics and its rock color. According to petrochemical data, the volcanic rocks in study area belong to high-K orogenic suties. On the discriminant diagrams such as La/Yb versus Th/Yb, these rocks falls into the discriminant fields for the normal continental margin arc.

  • PDF

Hydrogeochemistry of Groundwater Occurring in Complex Geological Environment of Yeongdong Area, Chungbuk, Korea (충북 영동군 복합 지질지역에서 산출되는 지하수의 수리지화학적 특성)

  • Moon, Sang-Ho
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.445-466
    • /
    • 2017
  • Yeongdong area is located in the contact zone between central southeastern Ogcheon belt and Yeongnam massif, in which Cretaceous Yeongdong basin exists. Therefore, the study area has complex geological environment of various geological age and rock types such as Precambrian metamorphic rocks, age-unknown Ogcheon Supergroup, Paleozoic/Mesozoic sedimentary rocks, Mesozoic igneous rocks and Quaternary alluvial deposits. This study focuses on the link between the various geology and water type, and discussed the source of some major ions and their related water-rock interaction. For this study, the field parameters and ion concentrations for twenty alluvial/weathered and eighty bedrock aquifer wells were used. Statistical analysis indicates that there was no significant differences in groundwater quality between wet and dry seasons. Although various types were observed due to complex geology, 80 to 84 % of samples showed $Ca-HCO_3$ water type. Some wells placed in alluvial/weathered aquifers of Precambrian metamorphic and Jurassic granitic terrains showed somewhat elevated $NO_3$ and Cl concentrations. $Mg-HCO_3$ typed waters prevailed in Cretaceous Yeongdong sedimentary rocks. The deeper wells placed in bedrock aquifers showed complicated water types varying from $Ca-HCO_3$ through $Ca-Cl/SO_4/NO_3$ to $Na-HCO_3$ and Na-Cl type. Groundwater samples with $Na-HCO_3$ or Na-Cl types are generally high in F concentrations, indicating more influences of water-rock interaction within mineralized/hydrothermal alteration zone by Cretaceous porphyry or granites. This study revealed that many deep-seated aquifer had been contaminated by $NO_3$, especially prominent in Jurassic granites area. Based on molar ratios of $HCO_3/Ca$, $HCO_3/Na$, Na/Si, it can be inferred that Ca and $HCO_3$ components of most groundwater in alluvial/weathered aquifer wells were definitely related with dissolution of calcite. On the other hand, Ca and $HCO_3$ in bedrock aquifer seem to be due to dissolution of feldspar besides calcite. However, these molar ratios require other mechanism except simple weathering process causing feldspar to be broken into kaolinite. The origin of $HCO_3$ of some groundwater occurring in Cretaceous Yeongdong sedimentary rock area seems to be from dissolution of dolomite($MgCO_3$) or strontianite($SrCO_3$) as well.

Paleomagnetism of the cretaceous sedimentary rocks in the Yongyang Sub-Basin (영양소분지에 분포하는 경상누층군에 대한 고지자기 연구)

  • 도성재
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.189-201
    • /
    • 1999
  • Paleomagnetic and rock magnetic investigations have been carried out for the Cretaceous Hanyang Group, exposed in the Yongyang Sub-Basins within the Kyeongsang Basin, eastern South Korea. A total of 452 oriented core samples was drilled from 31 sits for the study. The in-situ site mean direction is more dispersed than the mean direction after bedding correction, indicating that the fold test is positive at 95% confidence level. In addition, the stepwise unfolding of the characteristic remanent magfold test is positive at 95% confidence level. In addition, the stepwise unfolding of the characteristic remanent magnetization reveals that a maximum value of k is observed at 90% unfolding. Furthermore, the rock magnetic investigations and electron microscope observations of the representative samples show that the main magnetic carrier of the Hayang Group is the detrital specular hematite of single and pseudo-single domain sizes with negligible contribution of pigmentary hematite grains. These results collectively imply that the ChRM direction is the primary component acquired at the time of the formation of the strata. Provided the primary nature of the ChRM, a magnetostratigraphic correlation between polarities of the studied formation and the Geomagnetic Time Scale indicates that the Hayang Group in the Yongyang Sub-Basin can be correlated to the Cretaceous Long Normal superchron. The paleomagnetic pole position from this study is significantly different from those of the Hayang group in the Euiseong the Milyang sub-Basins. Rather the paleomagnetic pole position of the Hayang Group of the study area is closer to that of the Quaternary period or present time of the Korean Peninsula. It is hypothesized that the study area might be rotated about 25$^{\circ}$ aticlockwise with respect to the Euiseong and Milyang Sub-Basins after the formation of the strata and aquisition of the ChRM, although there is not enough geologic evidence supporting the rotation hypothesis.

  • PDF

Stratigraphy and Petroleum Geochemical Characteristics of Jiaolai Basin in Shandong Province of China (중국 교래분지의 층서와 석유지화학적 특성)

  • Cheong, Tae-Jin;Oh, Jae-Ho;Lee, Young-Joo;Kim, Ji-Hoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Jiaolai Basin is the Cretaceous continental sedimentary basin developed in Shandong Province of China. It is interpreted as a pull-apart basin which is filled with fluvio-lacustrine sediments and volcanic rocks. The sedimentary strata are divided into three formations: Laiyang Formation, Qingshan Formation and Wangshi Formation in ascending order. Laiyang Formation of the early Cretaceous consists of conglomerate, sandstone and shale, which are grey, black or red in color, respectively. Qingshan Formation of early Cretaceous includes various kinds of volcanic rocks. Late Cretaceous Wangshi Formation consists of red conglomerate, sandstone and shale. Various types of oil shows are observed on many outcrops in the basin such as asphalt filing fissures, oil smelling, rocks wetted with oil. However, commercial oil discovery was not made. Laiyang Formation is the richest in terms of organic matter contents. Some grey or black shales of Laiyang Formation contain more than 1% of organic matter. Kerogens of some layers mainly consist of amorphous organic matter or pollen. Thermal maturity of the organic matter reached main oil generation zone and hydrocarbon genetic potential is fairly good. According to such geochemical data, some layers of Laiyang Formation can act as hydrocarbon source rocks.

  • PDF

Mineralogy and Cheimical Composition of Soils with Relation to the Types of Parent Rocks in the Northern Pusan Area (부산 북부지역의 모암유형에 따른 토양의 구성광물 및 화학성분)

  • 김의선;황진연;김진섭;함세영;김재곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • The Cretaceous granite, andesite and sedimentary rocks are widely distributed in the northern Pusan area. The present study investigates mineralogical and geochemical charateristics of residual and cultivated soils derived from these rocks. The soils of granite area contain a large amount of quartz relative to clay minerals, whereas the soils of the andesite area contain more clay minerals than quartz. Clay minerals consist mainly of kaolin minerals illite hydroxy interlayered vermiculite interstratified mica/vermiculite and chlorite. Kaolin minerals are abundant in paddy soils while illite is abundant in less weathered soils. Si and K are major elements in the soils of granite area while Fe and Al in the soils of andesite area. In all the soils Ca, Mg and Na were generally depleted in comparison to those in parent rocks. Analysis data of trace element show that the enrichment pattern in soils depends on parent rock type with high oncentration of some elements over 100 ppm: Ba and Rb in granite area Zn, Bn, and V in andesite area, and Ba and V in sedimentary rock. In granite area, Rb and Th were greatly enriched in soil than in parent rocks. However, Cr, Ni and Sr commonly decrease, whereas Pb increases in all the soils. Exchangeable cation capacity(CEC) is relatively high in the soils of andesite are including abundant clay minerals. Collective evidences prove that the mineralogical and chemical compositions of soils are strongly dependent on the parent rock type. The mineralogy and chemistry of long cultivated soils are not significantly different from those of residual soils.

  • PDF

Evolution Trends of Biotite and Hornblende in Granitic Rocks from Yonghae-Yongdok Area, Northeastern Gyeongsang Basin, Korea (경상분지(慶尙盆地) 북동부(北東部) 영해(盈海)·영덕일대(盈德一帶)의 화강암질암(花崗岩質岩)의 흑운모(黑雲母)와 각섬석(角閃石)의 진화경로(進化經路))

  • Lee, Yoon-Jong;Kim, Joong-Wook;Chung, Won-Woo
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.349-361
    • /
    • 1993
  • The granitic rocks in the study area are divided into the schist and gneiss complex, Yongdok pluton, Yonghae pluton and Onjong pluton by their texture, fabric and relationship to the adjacent rocks in the field, Schist and gneiss complex occurs as xenolith or roof pendant in the Yongdok, Yonghae and Onjong plutons. The Yongdok pluton occurs in association with pegmatite and aplite in many places of its pluton. In the field it is obviously clarified that the Yongdok pluton is unconformably overlay by the Cretaceous sedimentary rocks. The Yonghae and Onjong plutons are gradationally changed each other, and these plutons truncate both the Yongdok pluton and the Cretaceous sedimentary rocks. Petrographically, the Yongdok pluton consists of granodiorite and granite with minor quartz monzonite. The Yonghae pluton is composed of diorite, quartz diorite, tonalite, and granodiorite. The Onjong pluton also ranges granodiorite to granite. Both the Yongdok and Yonghae-Onjong plutons are different in the constituent minerals, such as alkali feld~par, myrmekite, mica, sphene and mafic minerals. This suggests that each pluton might have been different crystallization sequence and characteristically different gological history during the crystallization period. Iron/magnesium ratio in biotite and hornblende from both the Yongdok and Yonghae-Onjong plutons gradually decrease as the differentiation index increasing in the whole rock. The decrease of this ratio strongly depend on the increase of opaque mineral contents. From the results of chemistry in the whole rocks and some mafic minerals, it is suggest that the granite plutons of the two different geological ages would have been suffered the environment of high oxygen fugacity in the process of magmatic emplacement and during the crystallization period.

  • PDF

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea (충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰)

  • Moon, Sang-Ho;Cho, Soo-Young;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.409-428
    • /
    • 2018
  • Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.