• Title/Summary/Keyword: Crest module

Search Result 4, Processing Time 0.009 seconds

Clinical, histologic, and histometric evaluation of implants with microthreaded crest module and SLA surface (SLA로 표면처리한 microthreaded crest module 임프란트의 임상적, 조직학적, 조직계측학적 분석)

  • Moon, Sang-Kwon;Pang, Eun-Kyoung;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.127-138
    • /
    • 2004
  • Background: Crestal bone loss known as saucerization is a frequently observed phenomenon. Recent studies have shown that implants with micothreaded crest module reduced the force concentration in the crestal region thus resulting in no or reduced crestal bone loss. This study presents a clinical, histologic, and histometric evaluation of implants with microthreaded crest module and SLA surface. Methods: The implants were placed in the mandible of 5 beagle dogs weighing 10-15kg. Four premolars were bilaterally extracted 8 weeks prior to implant placement. Mucoperiosteal flap was elevated and drilling with increasing diameter was performed under saline irrigation. After countersinking 2 implants were placed in each side resulting in 4 implants per dog. Healing period of 8 weeks was allowed before sacrificing the animals. Histologic preparation was performed for histologic and histometric analysis. Bone to implant contact as well as percentage of bone area inside threads were measured. T-test was used for statistical analysis with pvalue p<0.05. Results: 1. Healing was uneventful without any cover screw exposure. New bone formation around the implants was observed without any inflammatory infiltration. 2. Bone to implant contact in the microthread and thread were 43.90 ${\pm}$ 20.30 %, and 53.19 ${\pm}$ 20.97 % respectively. The overall bone to implant contact was 48.54 ${\pm}$ 20.95 %. 3. Percentage of bone area inside threads were 54.43 ${\pm}$ 10.39 %, and 38.44 ${\pm}$ 16.44 % for the microthread and thread respectively. There was statistically significant difference(p<0.05). The overall percentage of bone area inside threads was 46.67 ${\pm}$ 15.68 %.

Finite Element Stress Analysis in Supporting Bone according to Crest Module Shape of Fixture in Internal Connection System (내측연결 시스템에서 임플란트 고정체의 경부 형태에 따른 지지골에서의 유한요소 응력분석)

  • Park, Young-Nam;Kim, Hee-Jung;Oh, Sang-Ho;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.55-74
    • /
    • 2006
  • The external contour of an implant can have significant effects on the load transfer characteristics and may result in different bone failure rates for different implant system. The purpose of this study was to investigate the effects of crest module shape and occlusal load direction on bone failure modes of five commercially available dental implant systems. Five different implant systems with internal connection; ITI (Model 1), Astra (Model 2), Bicon (Model 3), Friadent (Model 4), and Paragon (Model 5), comparable in size, but different in thread profile and cest module shapes, were compared using the finite element method. Conclusively, in the internal connection system of the implant-abutment connection methods, the stress-induced pattern at the supporting bone according to the abutment connection form had differenence among them, and implants with narrowing crestal module cross-sections at the top of the cortical bone created more favorable load transfer characteristics in this region. But it is considered that the future study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (2) Development of CFD Model to Study the Effect of Tomato Plants on Internal Climate of Greenhouse - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (2)온실내 대기환경에 미치는 작물의 영향 분석을 위한 CFD 모델개발 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Hong Se-Woon;Sung Si-Heung
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The heterogeneity of crop transpiration is important to clearly understand the microclimate mechanisms and to efficiently handle the water resource in greenhouses. A computational fluid dynamic program (Fluent CFD version 6.2) was developed to study the internal climate and crop transpiration distributions of greenhouses. Additionally, the global solar radiation model and a crop heat exchange model were programmed together. Those models programmed using $C^{++}$ software were connected to the CFD main module using the user define function (UDF) technology. For the developed CFD validity, a field experiment was conducted at a $17{\times}6 m^2$ plastic-covered mechanically ventilated single-span greenhouse located at Pusan in Korea. The CFD internal distributions of air temperature, relative humidity, and air velocity at 1m height were validated against the experimental results. The CFD computed results were in close agreement with the measured distributions of the air temperature, relative humidity, and air velocity along the greenhouse. The averaged errors of their CFD computed results were 2.2%,2.1%, and 7.7%, respectively.