• Title/Summary/Keyword: Creep response

Search Result 85, Processing Time 0.024 seconds

Uncertainty and Sensitivity Analysis of Time-Dependent Deformation in Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 시간에 따른 변형의 확률 해석 및 민감도 해석)

  • 오병환;양인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.149-159
    • /
    • 1998
  • The reasonable prediction of time-dependent deformation of prestressed concrete(PSC) box girder bridges is very important for accurate construction as well as good serviceability. The long-term behavior is mostly influenced by the probabilistic characteristic of creep and shrinkage. This paper presents a method of statistical analysis and sensitivity analysis of creep and shrinkage effects in PSC box been taken into account - model uncertainty, parameter variation and environmental condition. The statistical and sensitivity analyses are performed by using the numerical simulation of Latin Hypercube sampling. For each sample, the time-dependent structural analysis is performed to produce response data, which are then statistically analyzed. The probabilistic prediction of the confidence limits on long-term effects of creep and shrinkage is then expressed. Three measure are examined to quantify the sensitivity of the outputs of each of the input variables. These are rank correlation coefficient(RCC), partical rank correlation coefficient(PRCC) and standardiozed rank regression coefficient(SRRC) computed on the ranks of the observations. Three creep and shrinkage models - i. e., ACI model. CEB-FIP model and the model in Korea Highway Bridge Specification - are studied. The creep model uncertainy factor and the relative humidity appear to be the most dominant factors with regard to the model output uncertainty.

Reliability Based Design of the Automotive Components considering Degradation Properties of Polymeric Materials (열화물성을 고려한 차량용 플라스틱 부품의 신뢰성 기반 설계)

  • Doh, Jaehyeok;Lee, Jongsoo;Ahn, Hyo-Sang;Kim, Sang-Woo;Kim, Seock-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.596-604
    • /
    • 2016
  • In this study, we used a stochastic approach for guaranteeing the reliability and robustness of the performance with regard to the design of polymer components, while taking into consideration the degradation properties and operating conditions in automobiles. Creep and tensile tests were performed for obtaining degradation properties. The Prony series, which described the viscoelastic models, were calculated to use the creep data by the Maxwell fluid model. We obtained the stress data from the frequency response analysis of the polymer components while considering the degradation properties. Limit state functions are generated by using these data. Reliability assessments are conducted under the variation of the degradation properties and area of frequency at peak response. For this study, the input parameters are assumed to be a normal distribution, and the reliability under the yield stress criteria is evaluated by using the Monte Carlo Simulation. As a result, the reliabilities, according to the three types of polymer materials in automotive components, are compared to each other and suggested the applicable possibility of polymeric materials in automobiles.

Design of Fuzzy PI Controller for Piezo Actuator of Nano Stage (나노 스테이지용 압전 구동기의 퍼지 PI 제어기 설계)

  • Cho, Seong-Yeon;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.629-632
    • /
    • 2003
  • Piezo actuators are mainly used in precision position control system because of their high position resolution. Although there have been many approaches in open loop control of this, those method turn out to be not effective in precision control due to hysteresis and creep. To overcome the problems, closed loop PI control method is used in commercial products. However, it is very difficult to obtain fast response with conventional PI control although piezo actuator has fast response. In this paper, we propose a fuzzy PI control method with the proposed fuzzy PI controller, we obtains faster settling response over the conventional PI controller. We verify the effectiveness of the proposed method with experimental results.

  • PDF

Estimation of Stress Variations on Time Effects in Prestressed Concrete Composite Girder Bridges (PCS 합성거더교의 시간에 따른 응력 변화 추정)

  • Yoon, Ji-Hoon;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.319-322
    • /
    • 2005
  • When a concrete structure is subjected to load, its response is both immediate and time dependent. Under sustained load, the deformation of a structure gradually increases with time and eventually may be many time greater than its instantanneous value. The gradual development of strain with time is caused by creep and shrinkage. On this study, to estimate of stress variations on time effects in partially prestressed concrete composite girder bridges, computer program applied Age-adjusted Effective Modulus Method(AEMM) in used.

  • PDF

The Effect of Broadcasting Sow Suckling Grunts in the Lactation Shed on Piglet Growth

  • Cronin, G.M.;Leeson, E.;Cronin, J.G.;Barnett, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.1019-1023
    • /
    • 2001
  • An on-farm trial was conducted in temperature-controlled lactation rooms at a commercial pig farm to investigate the efficacy of broadcasting sow suckling grunts from day 4 of lactation, on increasing piglet growth to weaning. In the Broadcast treatment, sows and litters were exposed to a 3-min broadcast from loud-speakers every 42 min. The Control treatment was not exposed to the broadcast. All sows and litters had similar husbandry and piglets were provided with creep feed on the floor twice daily. In each of the three replicates in time, the Broadcast and Control treatments were allocated to different lactation rooms at random and there were 12 sows and litters per treatment per replicate. A total of four identical lactation rooms were available for the trial, each containing 28 conventional sow and litter crates with piglet heater in the creep area. A non-trial room separated the two treatment rooms in each replicate to minimise the chance that the broadcast grunt stimulation was audible to the Control treatment litters. Five "normal and average-looking" piglets from the trial litters were weighed twice, 7 d apart. The cohort of five piglets was identified by ear-tags and formed the experimental unit for the statistical analysis. The average (${\pm}SD$) age of piglets at initial weighing was 7.7(${\pm}2.22$) days. For each litter, mean piglet live weight at day 14 of lactation was estimated by linear regression of the two weights recorded seven days apart, when on average, the Broadcast treatment had been exposed to the stimulation for 10 days. Piglets in the Broadcast treatment were heavier (p<0.01) at day 14 of lactation compared to Control treatment (4.24 and 3.92 kg, respectively) and tended to have a greater average daily weight gain over the 7-d period (245 and 228 g/day, respectively; p<0.08). The results suggest piglet growth was improved by about 8% in response to the regular, timed broadcast of sow suckling grunts in the lactation shed. The independent contributions of milk and creep feed to the improved growth remain to be determined.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

A Study on Performance Characteristics for a CNG Regulators of Automotive Vehicle (차량용 CNG 레귤레이터의 성능특성에 관한 연구)

  • Kim, Chang-Gi;Park, Cheol-Woong
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.12-16
    • /
    • 2007
  • The fuel pressure regulator mounted on CNG vehicles is used to maintain a constant pressure in the fuel injection system. It needs precise fuel pressure control to obtain benefits of high efficiency and low emissions in CNG vehicles. In this study, a high pressure test rig for the performance evaluation of CNG regulators was introduced. Two different CNG regulators were tested and compared each other at various test conditions. Results showed that dynamic response and creep characteristics are directly effected by the valve assembly design. Gas temperature was dramatically dropped at hish supply pressure conditions, so that effective design for coolant bowl is needed to prevent icing problem.

  • PDF

Time-dependent analysis of cable trusses -Part II. Simulation-based reliability assessment

  • Kmet, S.;Tomko, M.;J., Brda
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.171-193
    • /
    • 2011
  • One of the possible alternatives of simulation-based time-dependent reliability assessment of pre-stressed biconcave and biconvex cable trusses, the Monte Carlo method, is applied in this paper. The influence of an excessive deflection of cable truss (caused by creep of cables and rheologic changes) on its time-dependent serviceability is investigated. Attention is given to the definition of the basic random variables and their statistical functions (basic, mutually dependent random variables such as the pre-stressing forces of the bottom and top cable, structural geometry, the Young's modulus of elasticity of the cables, and the independent variables, such as permanent load, wind, snow and thermal actions). Then, the determination of the response of the cable truss to the loading effects, and the definition of the limiting values considering serviceability of the structure are performed. The potential of the method, using direct Monte Carlo technique for simulation-based time-dependent reliability assessment as a powerful tool, is emphasized. Results obtained by the First order reliability method (FORM) are compared with those obtained by the Monte Carlo simulation technique.

Time-dependent analysis of cable trusses -Part I. Closed-form computational model

  • Kmet, S.;Tomko, M.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.