• Title/Summary/Keyword: Creep life

Search Result 270, Processing Time 0.031 seconds

Calculation of Maximum Allowabel Temperature Difference for Life Design of Valve Casings for Steam Turbines of Fossil Power Plants (화력발전용 증기터빈 밸브 케이싱의 수명 설계를 위한 최대허용온도차 계산)

  • Ha, Joon-Wook;Kim, Tae-Woan;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.46-52
    • /
    • 1999
  • Large valves for steam turbines of fossil power plants are exposed to a severe mechanical and thermal loading resulting from steam with high pressure and high temperature. Valve casings are designed to withstand such a loading. During the operation of a plant, temperatures at inner and outer surface of the casings are measured and steam flow is controlled so that the measured difference is lower than the maximum allowable value determined in the design stage. In this paper, a method is presented to calculate the maximum allowable temperature difference at the inner and outer surface of valve casings for steam turbines of fossil power plants. The finite element method is used to analyze distribution of temperature and stresses of a casing under the operating condition. Low cycle fatigue and creep rupture are taken into consideration to determine the maximum allowable temperature difference. The method can be usefully applied in the design stage of the large valves for the steam turbines, contributing to safe and reliable operation of the fossil power plants.

  • PDF

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (II) - Life Prediction and Failure Mechanism - (냉간 가공된 316L 스테인리스 강의 저주기 피로 거동에 미치는 온도의 영향 (II) - 수명예측 및 파손 기구 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1676-1685
    • /
    • 2003
  • Tensile and low cycle fatigue tests on prior cold worked 3l6L stainless steel were carried out at various temperatures ftom room temperature to 650$^{\circ}C$. Fatigue resistance was decreased with increasing temperature and decreasing strain rate. Cyclic plastic deformation, creep, oxidation and interactions with each other are thought to be responsible for the reduction in fatigue resistance. Currently favored life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress-strain relation strongly depends on temperature. A phenomenological life prediction model was proposed to account for the influence of temperature on fatigue life and assessed by comparing with experimental result. LCF failure mechanism was investigated by observing fracture surfaces of LCF failed specimens with SEM.

Fatigue Life Prediction Model of 12% Cr Rotor Steel (12% 크롬 로터강의 피로수명 예측 모델에 관한 연구)

  • 장윤석;오세욱;오세규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1349-1355
    • /
    • 1990
  • By examining the fatigue deformation properties of 12% Cr rotor steel which has been proved to have high fatigue and creep rupture strength around 600deg. C, authors reviewed major fatigue life prediction models such as Manson, Langer and Morrow equations, and following results were obtained. (1) A simple life prediction model for 12% Cr rotor steel was obtained as follows : DELTA..epsilon.$_{t}$ =2.18+.sigma.$_{u}$ /E+ $N^{-0.065}$+ $e^{0.6}$ $N^{-0.025}$ This equation shows that fatigue life, N, can be easily determined when total strain range, DELTA..epsilon.$_{t}$ and ultimate tensile strength, .sigma.$_{u}$ are known by simple tension test on the given test conditions. (2) Life prediction equation with equivalent maximum stress, DELTA..sigma./2, corresponding maximum strain in one cycle at room temperature is as follows: DELTA..sigma./w=-7.01logN+96.69+96.69

Study on Effects of Solder Joint aging on the Reliability of Embedded Package Solder Joints using Numerical analysis (수치해석을 이용한 임베딩 패키지 솔더 조인트의 신뢰성에 미치는 에이징 효과 연구)

  • Cho, Seunghyun;Jang, Junyoung;Ko, Youngbae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • In this paper, the effects of solder joint aging on the reliability of embedded package solder joints were investigated using numerical analysis by finite element method. Solder joints were SAC305 with aging time 0, 60, 180 days. For reliability analysis, warpage of package and equivalent creep strain (ECS) and total strain energy density (TSED) of solder joint were analyzed. The analysis results show that the package warpage is decreased in the case of the embedded package compared to the non embedded package, and the reliability life of the solder joint is predicted to be high. Also, it was interpreted that the longer the aging time, the less the warpage of the embedded package, but the reliability life of the solder joint would be shortened.

Evaluation on Degradation of Cr-Mo-V Steel by Micro-Vickers Hardness Measurement (미소 비커스경도에 의한 Cr-Mo-V강의 경년열화 평가)

  • Kim, Jung-Ki;Nahm, Seung Hoon;Kim, Amkee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • Since Cr-Mo-V steel has excellent fracture and creep properties at elevated temperature, they are extensively used as steam turbine components such as the turbine rotor. However, the turbine rotor steel used to suffer material degradation during long term service. Therefore, the assessment of the safety and residual life of the turbine rotor is periodically required during service. One of the most convenient techniques for that is the hardness method mainly due to its simplicity and nondestructive characteristics. In this research, six specimens with different aging times of turbine rotor steel were artificially prepared by an isothermal heat treatment at $630^{\circ}C$. The micro Vickers hardnesses of specimens were measured at room temperature. The relationships between the fracture properties and the hardness ratio were investigated. And also an indirect method to evaluate the residual life of degraded turbine rotor was proposed based on the micro Vickers hardness measurement.

  • PDF

Time Dependent Extension and Failure Analysis of Structural Adhesive Assemblies Under Static Load Conditions

  • Young, Patrick H.;Miller, Zachary K.;Gwasdacus, Jeffrey M.
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.6-13
    • /
    • 2020
  • The objective of the current study is to characterize the long-term stability and efficacy of a structural adhesive assembly under static load. An apparatus was designed to be used in the Instron tensile test machine that would allow for real time modeling of the failure characteristics of an assembly utilizing a moisture- cure adhesive which was bonded to concrete. A regression model was developed that followed a linear - natural log function which was used to predict the expected life of the assembly. Evaluations at different curing times confirmed the structure was more robust with longer cure durations prior to loading. Finally, the results show that under the conditions the assembly was tested, there was only a small amount of inelastic creep and the regression models demonstrated the potential for a stable structure lasting several decades.

A Study on Mechanical Properties Changes to Improve the Confidence of Remaining Life Evaluation for the Weldment of Power Plant Boiler Tube(SA213-T12) (발전설비 보일러 튜브 용접부의 잔여수명평가 신뢰성 향상을 위한 기계적 물성 변화 연구(SA213-T12))

  • Oh, Byungjin;Jang, Joong Soon
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.102-107
    • /
    • 2014
  • Boiler equipment in power plant is always being operated in harsh conditions and severely exposed to the extreme environment of high temperature. Therefore periodically the state of devices should be checked, diagnosed, and analyzed to ensure the reliability of the equipment. Traditionally, such a diagnosis is based one or two physical properties of the sample taken from the equipment like hardness, microstructure, etc.. However, to enhance the confidence of the diagnosis, it is necessary to synthesize those properties together. This paper is to propose such a synthetic procedure for SA213-T12(1Cr-0.5Mo) which was developed to be used in $565^{\circ}C$ below condition. Creep test and accelerated degradation test were performed simultaneously, and the physical properties such as microstructure, tensile strength, yield strength, hardness, and indentation properties were measured. This paper proposes a method of determining the remaining life by quantitative comparison. It will provide the basis of evaluating life assessment more objective and reliable.

A Study on Mechanical Properties Changes to Improve the Confidence of Remaining Life Evaluation for the Weldment of Power Plant Boiler Tube (발전설비 보일러 튜브 용접부의 잔여수명평가 신뢰성 향상을 위한 기계적 물성 변화 연구)

  • Oh, Byungjin;Jang, Joong Soon
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.26-34
    • /
    • 2013
  • Boiler equipment in power plant is always being operated in harsh conditions and severely exposed to the extreme environment of high temperature. Therefore periodically the state of devices should be checked, diagnosed, and analyzed to ensure the reliability of the equipment. Traditionally, such a diagnosis is based one or two physical properties of the sample taken from the equipment like hardness, microstructure, etc.. However, to enhance the confidence of the diagnosis, it is necessary to synthesize those properties together. This paper is to propose such a synthetic procedure for T23 which was developed to be used in $569^{\circ}C/596^{\circ}C$ condition. Creep test and accelerated degradation test were performed simultaneously, and the physical properties such as microstructure, tensile strength, yield strength, hardness, and indentation properties were measured. This paper proposes a method of determining the remaining life by quantitative comparison. It will provide the basis of evaluating life assessment more objective and reliable.

Development of On-Line Life Monitoring System for high-Temperature Header of Fossile Powder Plant Boiler (화력발전소 보일러 고온헤더의 실시간 수명 감시시스템 개발)

  • 윤필기;정동관;윤기봉
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.605-611
    • /
    • 1999
  • Conventional methods for assessing remaining life of critical high temperature components in fossil power plants rely on nondestructive inspection practices and accompanying life analysis based on fracture mechanics By using these conventional methods. It has been difficult to perform uninterrupted in-service inspection for life prediction. Thus, efforts have been made for developing on-line remaining life monitoring systems employing information on the shape of structures, operating variables and material properties. In thus study, a software for on-line life monitoring system which performs real-time life evaluation of a high temperature system headers was developed. The software is capable of evaluating creep and fatigue life usage from the real-time stress data calculated by using temperatures/stress transfer Green functions derived in advance for the specific headers. The major benefits of the developed software life in determining future operating schedule, inspection interval, and replacement plan by monitoring real-time life usage based on prior operating history.

  • PDF

Remaining Life Assessment of High Temperature Steam Piping (고온 증기 파이프의 잔여수명 평가)

  • 윤기봉
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.12-24
    • /
    • 1995
  • Recently, more researches have been actively performed for the assessment of material degradation and residual-life of elevated temperature plant components, as some of domestic fossil power plants become older than 30 years. In this paper, results of on_site residual life assessment are reported for main steam pipes of Youngwol power station #2 which have operated since 1965. For critical weld locations such as butt welds branch welds, Y_sections and a T-section, replication technique and hardness measurement technique were employed for life_assessment. When cracks were detected by conventional NDT tests, crack growth life was calculated using a computer code. On the other hand, for matrix of pipes, residual life was quantitatively estimated by an analytic method and material degradation was estimated qualitatively using diameter measurement data and grain-boundary etching method. Also, direction in further improvement of on-site life assessment techniques are proposed.

  • PDF