• Title/Summary/Keyword: Creep characteristics

Search Result 298, Processing Time 0.026 seconds

Damage Analysis of Turbopump Turbine considering Creep-Fatigue effects (크리프-피로 영향을 고려한 터보펌프 터빈의 손상해석)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Structures under high temperature may have creep behavior and fatigue behavior. Durability study of the structures need the damage analysis with the creep-fatigue effects. In this paper, the damage analysis is studied for a turbine blade in the turbopump for a liquid rocket engine which is operated under high temperature condition. First of all, the load cycle is required for defining the operational characteristics of turbopump. The thermal stress analysis is done for a turbine blade of the turbopump. The stress analysis results are used to judge damage due to the creep and the fatigue. The strain-life method with miner rule is used for fatigue damage analysis. The Larson-Miller parameter master curve and robinson rule are used for the creep damage analysis. The linear damage summation method is used to consider creep-fatigue effects of turbopump turbine. Finally, the analysis results for fatigue and the influence are compared to figure out the damage phenomenon of the turbopump turbine.

Creep Characteristics of Weathered Soils and Application of Singh-Mitchell's Creep Formula (풍화토의 크리프 특성 및 Singh-Mitchell 크리프 방정식 적용성 검토)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Seong-Pil;Heo, Jun;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.69-76
    • /
    • 2009
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In Korea, weathered soil is abundant and occupies around one-third of the country. Weathered soil is visually described as a sandy or gravelley soil, but the behavior is quite different from the behavior of usual sand and gravel. In particular, the permeability of weathered soil is similar to sand, but the durability of settlement is similar to clay. Therefore analysis of time-dependent behavior of weathered soil is very important. In this study, Creep tests with weathered soils were carried out under constant principal stress differences of various stress levels which were experimentally obtained by triaxial compression test. The results of these tests showed the creep behavior for which the deformation increased with time, and the results are consistent with phenomenological model by creep equation of Singh-Mitchell.

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Characteristics of Creep Crack Growth in Pure Copper at Elevated Temperature (순동의 고온에서의 크리프 균열성장 특성)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Jung, Min-Woo;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.495-500
    • /
    • 2001
  • The significant creep in copper takes place at relatively low temperature and applied stress. Thus the study on modeling of creep behavior using the copper should provide researchers with benefits such as time for the test. In this study, a test of creep crack growth regarding copper was performed at 400 and $500^{\circ}C$, and analyzed. As result, the crack growth rate at $500^{\circ}C$ turned out to be 10 times higher than that at $400^{\circ}C$ in terms of $C^*$, while the crack growth rate at $500^{\circ}C$ was several hundreds times higher than that at $400^{\circ}C$ in terms of K. Moreover, a linear relationship between the crack growth rate and $C^*$ at the same temperature was established.

  • PDF

Creep Modelling of Reinforced Earth using Power Law-based Creep Models (Power Law 기반의 크리프 모델을 이용한 보강토 구조물의 크리프 모델링)

  • Kim, Jae-Wang;Kim, Sun-Bin;Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.164-178
    • /
    • 2009
  • The importance of long-term performance of reinforced earth structures has been gaining its attention as the use of reinforced earth structures as load supporting structures is increasing. When using reinforced earth structures as loading supporting structures the stability as well as serviceability requirements must be met. In that respect the time-dependent long term deformation characteristics should be well understood. In this study the applicability of power law-based creep models for modeling of creep deformation of the components of reinforced earth structures are examined.

  • PDF

Relationship between Creep Characteristic Values and Rupture time in STS304 Stainless Steels (스테인리스강의 크리프 특성치와 파단시간과의 관계)

  • KONG YU-SIK;KIM SEON-JIN;LEE BAE-SUB
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.228-233
    • /
    • 2004
  • The characteristics of the probability distribution for mechanical properties, e.g. tensile strength, reduction of area ana elongation, for STS304 stainless steel in elevated temperature were investigated from tensile test performed by constant cross head speea controls with 1mm/min, Recently, in order to clarify the strengthening mechanisms at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test ,technique development of high temperature creep behaviors for this material is very important. In this paper, the creep praperties and creep life prediction by Larson-Miller parameter method for STS304 stainless steel to be used for other high temperature components were presented at the elevated temperatures of 600, 650 and $700^{\circ}C$.

  • PDF

Creep Evaluation and Model Review of High-Strength Concrete According to Dry Curing (기건양생에 따른 고강도 콘크리트의 크리프 평가 및 모델 검토)

  • Hwang, Eui-Chul;Kim, Guy-Yong;Son, Min-Jae;Suh, Dong-Kyun;Lee, Yae-Chan;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.146-147
    • /
    • 2020
  • In this study, creep deformation characteristics of high strength concrete under dry curing conditions were investigated. It was confirmed that the creep coefficient decreases as the compressive strength of concrete increases. In addition, a modified proposal for calculating the ultimate creep factor of the ACI 209 model can be derived using the measured values.

  • PDF

Characteristics of creep grinding in slotted wheel (단속에 따른 Greep Feed 연삭가공 특성)

  • 이상철;박정우;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.905-909
    • /
    • 1997
  • A geometric error of machine parts is one of the most important factors that affect the accuracy of positioning, generating and measuring for precision machinery. It is known that the thermal deformation of a workpiece during surface grinding is the most important in the geometric error of ground surface. This paper experimentally describes the grinding characteristics of creep-feed grinding. The wheels have 6 slotted pieces in order to compare the grinding temperature with the geometric.

  • PDF

Estimation Method of Creep Coefficient in Concrete Structures (콘크리트 구조물에서 크리프 계수 추정 방법)

  • Park, Jong-Bum;Park, Jung-Il;Chang, Sung-Pil;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • To predict the time-dependent behavior of concrete structures, the models which describe the time-dependent characteristics of concrete, i.e. creep and shrinkage are required. However, there must be significant differences between the displacements that are obtained using the given creep and shrinkage models and the measured displacements, because of the uncertainties of creep and shrinkage model itself and those of environmental condition. There are some efforts to reduce these error or uncertainties by using the model which are obtained from creep test for the concrete in construction site. Nevertheless, the predicted values from this model may be still different from the actual values due to the same reason. This study aimed to propose a method of estimating the creep coefficient from the measured displacements of concrete structure, where creep model uncertainty factor was considered as an error factor of creep model. Numerical validation for double composite steel box and concrete beam showed desirable feasibility of the presented method. Consideration of the time-dependent characteristics of creep as one of the error factors make it possible to predict long-term behaviors of concrete structures more realistically, especially long-span PSC girder bridges and concrete cable-stayed bridges of which major problem is the geometry control under construction and maintenance.

Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel- (벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프-)

  • Kim, M.S.;Kim, S.R.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF