• Title/Summary/Keyword: Creep Void

Search Result 24, Processing Time 0.023 seconds

Estimation of Creep Cavities Using Neural Network and Progressive Damage Modeling (신경회로망과 점진적 손상 모델링을 이용한 크리프 기공의 평가)

  • Jo, Seok-Je;Jeong, Hyeon-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.455-463
    • /
    • 2000
  • In order to develop nondestructive techniques for the quantitative estimation of creep damage a series of crept copper samples were prepared and their ultrasonic velocities were measured. Velocities measured in three directions with respect to the loading axis decreased nonlinearly and their anisotropy increased as a function of creep-induced porosity. A progressive damage model was described to explain the void-velocity relationship, including the anisotropy. The comparison of modeling study showed that the creep voids evolved from sphere toward flat oblate spheroid with its minor axis aligned along the stress direction. This model allowed us to determine the average aspect ratio of voids for a given porosity content. A novel technique, the back propagation neural network (BPNN), was applied for estimating the porosity content due to the creep damage. The measured velocities were used to train the BP classifier, and its accuracy was tested on another set of creep samples containing 0 to 0.7 % void content. When the void aspect ratio was used as input parameter together with the velocity data, the NN algorithm provided much better estimation of void content.

Effect of Matrix Microstructure on Creep Properties of Squeeze Cast Magnesium Matrix Composites (용탕 단조한 Mg복합재료의 크립특성에 미치는 기지조직의 영향)

  • Kim, Byeong-Ho;Son, Jae-Hyoung;Park, Kyung-Chul;Park, Yong-Ho;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2009
  • Effect of matrix microstructure on creep behaviors of squeeze cast magnesium matrix composites was investigated. Aluminum borate whisker was used as reinforcement and AZ31, AS52 and Sr added AS52 Mg alloys were used for matrix alloys. The reinforcement was distributed homogeneously and defect-free composite was manufactured. Creep tests were carried out at the temperature of $150^{\circ}C$ under the applied stress of 50 and 100 MPa for Mg alloys and Mg MMCs, respectively. The creep resistance of Mg MMCs was in this order: AS52-Sr > AS52 AZ31 MMCs. Void initiation during creep mainly occurred at $Mg/Mg_{17}Al_{12}$ interface and propagation went along grain boundaries. On the other hand, $Mg_2Si$ phase was not attributed to the creep void initiation.

A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 고상 확산접합에 관한 연구)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

Elevated Temperature Creep Behavior of Rapidly Solidified Al-9.45wt%Fe-4.45wt%Cr Alloy (급냉응고된 Al-9.45wt%Fe-4.45wt%Cr합금의 고온 크?거동)

  • Rhim, J.K.;Kim, K.H.;Kim, T.S.
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.208-215
    • /
    • 1999
  • The creep behavior of a rapidly solidified and consolidated Al-9.45wt%Fe-4.45wt%Cr alloy were investigated in the stress range 40 to 115 MPa and temperature range 300(0.53Tm) to 441$^{\circ}C$(0.66Tm). It is of use to available aerospace and automobile industries for the improved performance of materials used at high temperature. Because Al alloys with improved creep resistance offer the potential for lower weight and reduced costs in aerospace and automobile components (e.g., structural members and engine parts) through the replacement of heavier and more costly materials, the safety in use at high temperature is good. The alloy is characterized by high stress exponents and activation energies for creep, which are greatly dependent on the stress and temperature. Because the creep stress is seen to cause a strongly significant enhancement of coarsening, the coarsening rate of the dispersed particles in all crept specimens is faster than that in isothermally annealed specimens. Dislocations connecting dispersoids are observed more cofrequently in crept specimens with higher stress and lower temperature. The creep strain rates in the power law creep regime were found to be predicted much better by the Shorty and Rosler/Arzt equation with the inclusion of a threshold stress and dislocation detachment mechanism. The dispersoids in this alloy were acting a source of void nucleation that finally leaded to ductile fracture within the grain so called intergranular. Each void was initiated, grown and failed at the dispersoids in the aluminium matrix. Grain boundary accommodation of the slip produced, which result in initiation of the void and then final transgranular fracture. Therefore, it was confirmed that these dispersoids played an important role in the fracture mechanism by the formation of $Al_{13}Fe_4$, $Al_{13}Cr_2$ and $Al_2O_3$.

  • PDF

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring

  • Khvostov, Grigori
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1190-1197
    • /
    • 2018
  • Analysis of the GRSW-A model coupled into the FALCON code is extended by simulation of central void formation in fuel pellets due to high-temperature fuel restructuring. The extended calculation is verified against published, well-known experimental data. Good agreement with the data for a central void diameter in pellets of the rod irradiated in an Experimental Breeder Reactor is shown. The new calculation methodology is employed in comparative analysis of modern BWR fuel behavior under assumed high-power operation. The initial fuel porosity is shown to have a major effect on the predicted central void diameter during the operation in question. Discernible effects of a central void on peak fuel temperature and Pellet-Cladding Mechanical Interaction (PCMI) during a simulated power ramp are shown. A mitigating effect on PCMI is largely attributed to the additional free volume in the pellets into which the fuel can creep due to internal compressive stresses during a power ramp.

A Study on the Creep Characteristics of QFP Solder Joints (QFP 솔더접합부의 크립특성에 관한 연구)

  • Cho, Yun-Sung;Cho, Myung-Gi;Kim, Jong-Min;Lee, Seong-Hyuk;Shin, Young-Eui
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.151-156
    • /
    • 2007
  • In this paper, the creep characteristics of lead and lead-free solder joint were investigated using the QFP(Quad Flat Package) creep test. Two kind of solder pastes(Sn-3Ag-0.5Cu, Sn-0.2Sb-0.4Ag-37.4Pb) were applied to the QFP solder joints and each specimen was checked the external and internal failures(i.e., wetting failure, void, pin hole, poor-heel fillet) by digital microscope and X-ray inspection. The creep test was conducted at the temperatures of $100^{\circ}C$ and $130^{\circ}C$ under the load of 15$\sim$20% of average pull strength in solder joints. The creep characteristics of each solder joints were compared using the creep strain-time curve and creep strain rate-stress curves. Through the comparison, the Sn-3Ag-0.5Cu solder joints have higher creep resistance than that of Sn-0.3Sb-0.4Ag-37.4Pb. Also, the grain boundary sliding in the fracture surface and the necking of solder joint were observed by FE-SEM.

Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses

  • Wang, Z.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.303-319
    • /
    • 2010
  • The effect of grain crushing on the deformation of sand in 1D compression and 1D creep at high stresses was investigated theoretically and experimentally. An approach was proposed to formulate the process of grain crushing in sand in accordance with the laws of fracture mechanics and energy conservation. With this approach, the relation between the void ratio and the amount of grains crushed in 1D compression was derived. Laboratory test data were used to verify this derived relation. In addition, it was observed that there are similarities in evolution of grain size distribution in 1D compression and 1D creep tests. This implies that the changes in microstructure in sand under 1D compression and 1D creep are comparable.

High Temperature Creep Characteristics Evaluation for Degraded Heat Resistance Steel of Power Plant by Mini-Specimen (미소시험편에 의한 재질열화된 내열강의 고온 크리프 특성 평가)

  • Lyu, Dae-Young;Baek, Seung-Se;Yu, Hyo-Sun
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.429-435
    • /
    • 2003
  • In this study the new creep test using miniaturized specimen(10${\times}$10${\times}$0.5 ㎣) was performed to evaluate the creep characteristics for degraded materials of 2.25Cr-1Mo steel. For this creep test, the artificially aged materials for 330 hrs and 1820hrs at $630^{\circ}C$ were used. The test temperatures applied for the creep deformation of miniaturized specimens was X$630^{\circ}C$ and the applied loads were between 45 kg∼80 kg. After creep test, macro- and microscopic observation were conducted by the scanning electron microscope(SEM). The creep curves depended definitely on applied load and microstructure and showed the three stages of creep behavior like uniaxial tensile creep curves. The load exponents of virgin, 330 hrs and 1820 hrs materials based on creep rate showed 14.8, 9.5 and 8.3 at $550^{\circ}C$ respectively, The 1820 hrs material showed the lowest load exponent and this behavior was also observed in the case of load exponent based on creep rupture time. In contrast to virgin material which exhibited fined dimple fractography, a lot of carbides like net structure and voids were observed on the fractography of degraded materials.

The Experimental Study on the Long-term Creep Settlements of Nam-Hae Sands (남해안 모래의 장기 크리프 침하 특성에 관한 실험적 연구)

  • Park, Eonsang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.21-28
    • /
    • 2018
  • In this study, a standard consolidation test (Oedometer) was performed on the relative density of sand in the south coast to evaluate long-term creep settlement characteristics. Experimental results show that the cumulative settlement at the final loading stage decreases as the relative density increases and the variation of the void ratio decreases. As a result of analyzing the settlement rate of long-term creep of sand, creep settlement of 4.7~11.0% occurred depending on relative density with respect to total settlement. The creep parameter, Beta, of Schmertmann et al. (1978) was estimated to be 0.17~0.40 (average 0.21), and it tended to converge to a certain value when the load step becomes more than a certain level. It was found that there is no significant difference in the creep parameter depending on the layer thickness, and it was confirmed that the creep parameter could be applied regardless of the field layer thickness.