• Title/Summary/Keyword: Creep Potential

Search Result 47, Processing Time 0.018 seconds

Effect of Mn Addition on Sintering Properties of Ti-10wt.%Al-xMn Powder Alloy (Ti-10wt.%Al-xMn 분말합금의 Mn첨가에 따른 소결특성 평가)

  • Shin, Gi-Seung;Hyun, Yong-Taek;Park, Nho-Kwang;Park, Yong-Ho;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.235-241
    • /
    • 2017
  • Titanium alloys have high specific strength, excellent corrosion and wear resistance, as well as high heat-resistant strength compared to conventional steel materials. As intermetallic compounds based on Ti, TiAl alloys are becoming increasingly popular in the aerospace field because these alloys have low density and high creep properties. In spite of those advantages, the low ductility at room temperature and difficult machining performance of TiAl and $Ti_3Al$ materials has limited their potential applications. Titanium powder can be used in such cases for weight and cost reduction. Herein, pre-forms of Ti-Al-xMn powder alloys are fabricated by compression forming. In this process, Ti powder is added to Al and Mn powders and compressed, and the resulting mixture is subjected to various sintering temperature and holding times. The density of the powder-sintered specimens is measured and evaluated by correlation with phase formation, Mn addition, Kirkendall void, etc. Strong Al-Mn reactions can restrain Kirkendall void formation in Ti-Al-xMn powder alloys and result in increased density of the powder alloys. The effect of Al-Mn reactions and microstructural changes as well as Mn addition on the high-temperature compression properties are also analyzed for the Ti-Al-xMn powder alloys.

Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement

  • Kim, Ji-Min;Lee, Jun;Sohn, Hoon
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.129-139
    • /
    • 2018
  • Post-tensioning (PT) tendons are commonly used for the assembly of modularized concrete members, and tension is applied to the tendons during construction to facilitate the integrated behavior of the members. However, the tension in a PT tendon decreases over time due to steel corrosion and concrete creep, and consequently, the stress on the anchor head that secures the PT tendon also diminishes. This study proposes an automatic detection system to identify tension reduction in a PT tendon using pulsed-eddy-current (PEC) measurement. An eddy-current sensor is installed on the surface of the steel anchor head. The sensor creates a pulsed excitation to the driving coil and measures the resulting PEC response using the pick-up coil. The basic premise is that the tension reduction of a PT tendon results in stress reduction on the anchor head surface and a change in the PEC intensity measured by the pick-up coil. Thus, PEC measurement is used to detect the reduction of the anchor head stress and consequently the reduction of the PT tendon force below a certain threshold value. The advantages of the proposed PEC-based tension-reduction-detection (PTRD) system are (1) a low-cost (< $ 30), low-power (< 2 Watts) sensor, (2) a short inspection time (< 10 seconds), (3) high reliability and (4) the potential for embedded sensing. A 3.3 m long full-scale monostrand PT tendon was used to evaluate the performance of the proposed PTRD system. The PT tendon was tensioned to 180 kN using a custom universal tensile machine, and the tension was decreased to 0 kN at 20 kN intervals. At each tension, the PEC responses were measured, and tension reduction was successfully detected.

Mechanical Properties of Controlled Low Strength Materials with Marine Dredged Soil (해양준설토를 이용한 유동성 뒤채움재의 역학적 특성)

  • Kim, Ju-Deuk;Lee, Byung-Sik;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.2 s.25
    • /
    • pp.35-44
    • /
    • 2007
  • Plowable fill is generally a mixture of sand, fly ash, a small amount of cement and water. Sand is the major component of most flowable fill mixes. Marine dredged soil was adopted for flowable fill instead of fly ash. Natural sea sand and in-situ soil were used for comparison. The flow behavior, hardening characteristics, and ultimate strength behavior of flowable fill were investigated. The unconfined compression test necessary to sustain walkability as the fresh flowble fill hardens was determined and the strength at 3-days appeared to correlate well with the water-to-cement ratio. The strength parameters, like cohesion and internal friction angle, was determined along the curing time. The creep test for settlement potential was conducted. Also, potable falling weight deflectometer(PFWD) test has been carried out for elastic modulus of each controlled low strength materials(CLSM). The data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.

A Study on the Shrinkage Cracking Properties of Concrete by Using Blast Furnace Slag Cement and Frost-Resistant Accelerator (고로슬래그시멘트 및 내한촉진제를 사용한 콘크리트의 수축균열특성에 관한 연구)

  • Choi, Hyeong-Gil;Choi, Hee-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • As a cold-weather-concrete construction technique for enhancing the sustainability and improving efficiency of cold-weather construction, the cracking timing, the starting point of deterioration for concrete, due to the shrinkage of the blast furnace slag cement concrete including accelerator was evaluated. As a result, by using blast furnace slag and accelerator, the cracking was developed faster with higher cracking potential under the restrained conditions at constant age and free-shrinkage strain. It can be considered that the results of decreased stress relaxation by creep or increased restraint with increased free-shrinkage strain causes the increased cracking development speed. Hence, it should be considered the necessary of cracking due to the shrinkage when blast furnace slag or accelerator was used for cold-weather construction.

Phenotypic Variation in the Breast of Live Broiler Chickens Over Time (시간에 따른 생축 육계 가슴살의 표현형 변이)

  • Ji-Won Kim;Chang-Ho Han;Seul-Gy Lee;Jun-Ho Lee;Su-Yong Jang;Jeong-Uk Eom;Kang-Jin Jeong;Jae-Cheol Jang;Hyun-Wook Kim;Han-Sul Yang;Sea-Hwan Sohn;Sang-Hyon Oh
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • This study utilized the non-invasive MyotonPRO® device to analyze the stiffness in breast muscles of commercial broilers (Ross 308 and Arbor Acres) and compared these findings with data reported for Ross 708, where Woody Breast (WB) symptoms had been previously documented. The research revealed that Ross 308 and Arbor Acres displayed relatively lower stiffness values compared to Ross 708, suggesting a lack of WB expression. These results indicate differentiation in breast muscle traits across strains and underscore the necessity for further research into factors influencing WB manifestation. The study also measured additional muscle tone characteristics such as Frequency, Decrement, Relaxation, and Creep across various growth stages (2, 4, 6, and 8 weeks), finding significant variations with pronounced severity at weeks 2 and 8. An increase in stiffness was observed as the broilers aged, pointing to potential growth-related or stress-induced changes affecting WB severity. A strong positive correlation was established between increased breast meat weight and WB severity, highlighting that heavier breast meat could exacerbate the condition. This correlation is vital for the poultry industry, suggesting that weight management could help mitigate WB effects. Moreover, the potential for genetic selection and breeding strategies to reduce WB occurrence was emphasized, which could aid in enhancing management practices in commercial poultry production. Collectively, these insights contribute to a deeper understanding of WB in broilers and propose avenues for future research and practical strategies to minimize its impact.