• 제목/요약/키워드: Creep Life Fraction

검색결과 20건 처리시간 0.02초

초음파 음속 및 경도법에 의한 발전소 고온배관재의 크리프 손상평가 (Creep Damage Evaluation of High-Temperature Pipeline in Power Plant by Using Ultrasonic Velocity Measurement and Hardness Test)

  • 허광범;유근봉;조용상;이상국
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.92-99
    • /
    • 1999
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in load bearing structures of pressurized components operationg at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damgage have been used. So far, the replica method is mainly used for the inspection of high temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or intergranular microcracks were carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation was analyzed. As a result of ultrasonic tests for crept for specimens, we founded that the sound velocity was decreased as increase of creep life fraction(${phi}c$) and also, confirmed that hardness was decreased as increase of creep life fraction(${phi}c$).

  • PDF

2.25Cr1Mo강의 크리프 손상에 대한 초음파 시험평가 (Ultrasonic Evaluation for the Creep Damage of 2.25Cr1Mo Steel)

  • 허광범;이인철;정계조;조용상;이상국;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.31-36
    • /
    • 2000
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in the load bearing structures of pressurized components operating at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damage have been used. So far, the replica method is mainly used for the Inspection of High temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or integranular microcracks are carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation is analyzed. As a result of ultrasonic tests for crept specimens, we find that the sound velocity is decreased as the increase of creep life fraction$({\Phi}_c)$ and also, confirmed that hardness is decreased as the increase of creep life fraction$({\Phi}_c)$ but the coefficient of ultrasonic attenuation is increased as the increase of creep life fraction$({\Phi}_c)$. Finally based on the result in this paper, it can be recognized that the ultrasonic techniques using velocities and attenuation coefficient factor are very useful non-destructive methods to evaluate the degree of material degradation in fossile power plants.

  • PDF

온도 변동하의 A1 7075 합금의 크리이프 및 파단수명 (Creep and Rupture Life of Al 7075 alloy under step-wise temperature cycling)

  • 김창건;강대민;구양;박경동;백남주
    • 한국안전학회지
    • /
    • 제4권1호
    • /
    • pp.25-39
    • /
    • 1989
  • Cyclic temperature creep tests were carried out an AS 7075 alloy specimens were subjected to a constant load and stepwise temperature cycles in which temperature was fluctuated between 30$0^{\circ}C$ and 25$0^{\circ}C$ with three different cycle ratios. The highest frequency of cycling was 1 cycle per 10 hr and the lowest one was 1 cycle per 12 hr. From the creep experimental results with the above conditions the creep strain under cyclic temperature can be predicted easily by introd ucing the equivalent steady temperature because defined by Eq.(16), but the rupture life is 1.1 time than those of constant temperature because of effect of temperature history at tertiary creep range. Besides thlis result, the results of the creep test under cyclic temperature conditions are respectively compayiea with calculated rupture lives using the life fraction law and Eq.(18). The agreement between the obseried rupture times and calculated ones is fairly good. So creep rupture lives can be respectively predicted using life fraction law and Eq.(18).

  • PDF

컴퓨터 화상처리 기법을 이용한 고온 구조물의 수명평가 연구 (A Study on Life Assessment for In-Service High-Temperature Components Using Image Processing Technique)

  • 김효진;정재진
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.44-50
    • /
    • 1998
  • The creep life fraction can be evaluated by the degree of grain deformation since the grain of Cr-Mo base metal deforms in the direction of stress. The grain deformation method using image processing technique is developed for life assessment of in-service high-temperature components. The new assessment model of grain deformation method is presented to apply to in-service components and is verified by interrupted creep test for ex-serviced material of 1Cr-0.5Mo steel. The proposed model, which is irrespective of stress direction, is to evaluate mean of the absolute deviation for the measured ratios which are diametrical maximum to minimum dimensions for grains.

  • PDF

기공의 면적에 의한 크립 수명예측법 (The Creep Life Prediction Method by Cavity Area)

  • 홍성호
    • 대한기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.1455-1461
    • /
    • 1991
  • 본 연구에서는 Kachanov의 재료손상(material damage)모델을 이용하여 새로운 수명예측식을 만들고, 이 수명예측식의 타당성을 조사하기 위하여, 최근에 발표된 크 립 수명과 기공분포와의 실험결과와 비교하였다.

초음파법을 이용한 Cr-Mo강 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of Cr-Mo Steel High-Temperature Pipeline Material for Fossil Power Plant Using Ultrasonic Test Method)

  • 이상국
    • 비파괴검사학회지
    • /
    • 제20권1호
    • /
    • pp.18-26
    • /
    • 2000
  • 화력발전소 보일러 고온배관인 주증기관, 헤드 및 증기드럼 등의 설비들은 장시간동안 고온고압의 가혹한 조건으로 운전됨에 따라 크리프손상에 의해 열화되고 있다. 이들 설비의 크리프손상측정에 적용되는 종래의 비파괴기법인 레프리카법, 전기저항법 및 경도법 등은 복잡한 측정절차 및 접근성, 검사결과의 신뢰도 및 측정정도 등 여러가지면에서 단점이 많다. 따라서 본 논문에서는 화력발전소 주요 고온배관에서 발생되는 경년열화인 크리프손상에 대한초음파 측정연구를 수행한 결과로서, 고온배관재료인 Cr-Mo강의 크리프 인공열화재를 대상으로 이들에 대한 크리프손상 상태별 초음과 음속(sound velocity) 및 감쇠(attenuation)의 초음파 신호특성을 평가하였다.

  • PDF

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

초음파 감쇠 및 전기저항 측정법에 의한 발전소 고온배관의 크리프손상 평가 (Nondestructive Creep Damage Evaluation of High-Temperature Pipelines by Ultrasonic Attenuation Measurement and Electric Resistance Methods)

  • 이인철;길두송;정계조;조용상;이상국
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.100-107
    • /
    • 1999
  • Due to the high temperature and pressure, the materials of pipeline in power plant are degraded by creep damage. So far, many conventional measurement techniques such as replica method, electric resistance method, adn hardness test method for creep damage have been used. Among them, the replica method has mainly been used for the inspection of components. But this technique is restricted to the applications at the surface of the objects and cannot be used to material inside. In this paper, the measuring methods of evaluation by using ultrasonic attenuation and electric resistance for the creep detection of creep damage in the form of cavities on grain boundaries or intergranular microcracks were carried out. Absolute measuring method of quantitave ultrasonic attenuation technique for 1Cr0.5Mo material degradation was analyzed for determining the creep degradation steps using life prediction formula. As a result of measurement for creep specimens, we founded that the coefficient of utrasonic attenuation was increased as the increase of creep life fracton(${phi}c$) and the decreasing rate of wlwctric resistance was also increased.

  • PDF

참조응력을 이용한 316LN 스테인리스강의 크리프 해석 (Creep Analysis of Type 316LN Stainless Steel Using Reference Stress)

  • 김우곤;류우석
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.

Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells

  • Kashkoli, Mosayeb Davoudi;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.349-362
    • /
    • 2018
  • This paper presents a semi-analytical solution for the creep analysis and life assessment of 304L austenitic stainless steel thick truncated conical shells using multilayered method based on the first order shear deformation theory (FSDT). The cone is subjected to the non-uniform internal pressure and temperature gradient. Damages are obtained in thick truncated conical shell using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The creep response of the material is described by Norton's law. In the multilayer method, the truncated cone is divided into n homogeneous disks, and n sets of differential equations with constant coefficients. This set of equations is solved analytically by applying boundary and continuity conditions between the layers. The results obtained analytically have been compared with the numerical results of the finite element method. The results show that the multilayered method based on FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial, circumferential and shear stresses. It is shown that non-uniform pressure has significant influences on the creep damages and remaining life of the truncated cone.