• Title/Summary/Keyword: Creep Design

Search Result 316, Processing Time 0.022 seconds

Evaluation of Creep Behaviors of Alloy 690 Steam Generator Tubing Material (Alloy 690 증기발생기 전열관 재료의 크리프 거동 평가)

  • Kim, Jong Min;Kim, Woo Gon;Kim, Min Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.64-70
    • /
    • 2019
  • In recent years, attention has been paid to the integrity of steam generator (SG) tubes due to severe accident and beyond design basis accident conditions. In these transient conditions, steam generator tubes may be damaged by high temperature and pressure, which might result in a risk of fission products being released to the environment due to the failure. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690 using tube specimens. Based on manufacturer's creep data and creep test results performed in this study, creep life prediction was carried out using the Larson-Miller (LM) Parameter, Orr-Sherby-Dorn (OSD) parameter, Manson-Haford (MH) parameter, and Wilshire's approach. And a hyperbolic sine (sinh) function to determine master curves in LM, OSD and MH parameter methods was used for improving the creep life estimation of Alloy 690 material.

High Temperature Structural Integrity Evaluation Method and Application Studies by ASME-NH for the Next Generation Reactor Design

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2061-2078
    • /
    • 2006
  • The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500$^{\circ}C$ and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated.

Characteristics of Short-Term Creep Rupture in STS304 Steels (STS304강의 단시간 크리프 파단특성 평가)

  • Kim, Seon-Jin;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.28-33
    • /
    • 2007
  • The objective of this paper is to investigate the relationship between the short-term creep rupture time and the creep rupture properties at three different elevated temperatures in STS304 stainless steel. Uniaxial constant stress creep rupture tests were performed on the steel to observe the creep rupture behaviors at the elevated temperatures of 600, 650 and 700, according to the testing matrix. It is very important to predict creep life in practical creep design problems. As one of the series of studies on the statistical modelling of probabilistic creep rupture time and the development of creep life prediction techniques, the relationship between applied stress and creep rupture behaviors, such as creep strain rate and rupture time, were investigated. In addition, the Monkman-Grant relationship was observed between the steady-state creep rate and the creep rupture time. The creep rupture surfaces observed by SEM showed up dimple phenomenon at all conditions.

Creep Behavior of 9% Ni Alloy Steel at Elevated Temperatures

  • Suh, Chang-Min;Oh, Sang-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.12-17
    • /
    • 2011
  • Little design data is available for the creep life prediction of 9% Ni alloy in elevated temperatures. Therefore, in this study, a series of creep tests under 16 combined conditions with 4 kinds of stresses and 4 temperatures was performed to obtain creep design and life prediction data for 9% Ni alloy, with the following results. The stress exponents decreased as the test temperature increased. The creep activation energy gradually decreased as the stresses became larger. The Larson-Miller parameter (LMP) constant for this alloy was estimated to be about 2.

A Study on the Time-dependent Characteristics of Prestressed Concrete Box-Girder Bridge (프리스트레스트 콘크리트 박스거더 교량이 시간의존적 특성에 관한 연구)

  • 윤영수;이만섭;최한태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.674-679
    • /
    • 1998
  • In designing the prestressed concrete box-bridge, the dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which, therefore, must be considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code and EMM, AEMM, RCM, IDM and SSM has been suggested for analytical method in consideration of the time-dependent characteristics. In this study, the creep test was carried out for four curing ages of concrete which were applied to the prestressed concrete structure at a construction site, and the results of test were compared to the values of creep prediction by the design code. Also the creep test of step-wise incremental stresses were performed and were compared to analytical methods.

  • PDF

The Prediction of Concrete Creep

  • Shon, Howoong;Kim, Youngkyung
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.277-282
    • /
    • 2004
  • Creep deformation of concrete is often responsible for excessive deflection at loads which can compromise the performance of elements within structures. Hence, the prediction of the magnitude and rate of creep strain is an important requirement of the design process and management of structures. Although laboratory tests may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically based national design code models are relied upon to predict the magnitude of creep strain.This paper reviews the accuracy of creep predictions yielded by eight commonly used international "code type" models, all of which do not consider the same material parameters and yield a range of predicted strains, when compared with actual strains measured on a range of concretes in seventeen different investigations. The models assessed are the: SABS 0100 (1992), BS 8110 (1985), ACI 209 (1992), AS 3600 (1998), CEB-FIP (1970, 1978 and 1990) and the RILEM Model B3 (1995). The RILEM Model B3 (1995) and CEB-FIP (1978) were found to be the most and least accurate, respectively.

  • PDF

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Creep Behaviour of Solution Treated Alpha Titanium Alloy for Automotive Parts (자동차부품 소재개발을 위한 알파 티타늄 합금의 용체화 처리후 정적 크리프 거동)

  • Hwang Kyungchoong;Yoon Jongho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.153-158
    • /
    • 2005
  • Titanium alloy has widely been used as material for automotive parts because it has high specific strength. It is also light and harmless to human body. But, we have little design data about the creep behaviors of the alloy. Therefore, in this study, creep tests under four constant stress conditions have been conducted with low different temperature conditions. A series of creep tests had been performed to get the basic design data and life prediction of titanium products and we have gotten the fallowing results. First, the stress exponents decrease as the test temperatures increased. Secondly, the creep activation energy gradually decrease as the stresses became bigger. Thirdly, the constant of Larson-Miller parameter on this alloy was estimated as about 7.5. And for the last, the fractographs at the creep rupture showed the ductile fracture due to the intergranullar rupture.

Design of Creep Function for Forklift Automatic Transmission (지게차 자동변속기 저속주행기능 설계)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.46-55
    • /
    • 2021
  • A forklift is a powered industrial vehicle used to lift and move materials over short distances. Nowadays, almost all forklifts are equipped with an automatic transmission due to its improved operator comfort and increased productivity. Thanks to marked improvement of transmission control unit equipped with highly-advanced microcontrollers, recently developed automatic transmission for forklift have various auxiliary functions such as creep, auto retardation, and automatic shift with excellent shift quality. This paper deals with the creep function which enables one to maneuver a forklift at the designated low speed by slip control of clutches. The design of creep function was based on four modes of creep operation depending on the status of the operator's shift lever and accelerator pedal. Control algorithms and control parameters for each mode were designed to achieve the desired static and dynamic performance. Vehicle test for the designed creep function was carried out with an independently developed embedded controller. Test results confirmed good creep speed control without speed error at a steady state with a mild shift shock during mode changes by stepping or releasing the accelerator.

Structural design and integrity evaluations for reactor vessel of PGSFR sodium-cooled fast reactor (PGSFR 소듐냉각고속로 원자로용기 설계 및 구조건전성 평가)

  • Koo, Gyeong Hoi;Kim, Sung Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.70-77
    • /
    • 2016
  • In this paper, the structural design and integrity evaluations for a reactor vessel of PGSFR sodium-cooled fast reactor(150MWe) are carried out in compliance with ASME BPV III, Division 5 Subsection HB. The reactor vessel is designed with a direct contact of primary sodium coolant to its inner surface and has a double vessel concept enclosing by containment vessel. To assure the structural integrity for 60 years design lifetime and elevated operating temperature of $545^{\circ}C$, which can invoke creep and creep-fatigue damage, the structural integrity evaluations are carried out in compliance with the ASME code rules. The design loads considered in this evaluations are primary loads and operation thermal cycling loads of normal heat-up and cool-down. From the evaluations, the PGSFR reactor vessel satisfies the ASME code limits but it was found that there is a little design margin of creep damage for inner surface at the region of cold pool free surface.