• Title/Summary/Keyword: Creep Curve

Search Result 105, Processing Time 0.029 seconds

Evaluation on Residual Compressive Strength and Strain Properties of Ultra High Strength Concrete with Design Load and Elevated Temperature (설계하중 및 고온을 받은 초고강도 콘크리트의 잔존압축강도 및 변형 특성 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Nam, Jeong-Soo;Yun, Jong-Il;Bae, Chang-O;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.263-264
    • /
    • 2012
  • In this study, the ultra high strength concrete which have 100, 150, 200MPa took the heat from 20℃ to 70 0℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

Microstructure Evolution of Superalloy Nimonic 80A (초내열합금 Nimonic 80A의 미세조직 변화에 관한 연구)

  • Jeong H. S.;Cho J. R.;Park H. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.174-177
    • /
    • 2004
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. These products are used for aerospace, marine engineering and power generation, etc. The control of forging parameters such as strain, strain rate, temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. It is necessary to understand the microstructure variation evolution. The microstructure change evolution occurs by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range $0.05-5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range 0.05, $5s^{-1}$, holding time range 5, 10, 100, 600 sec using hot compression tests. Modeling equations are developed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters of modeling equation are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of initial grain size and holding time.

  • PDF

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

The Influence of Load Increment Ratio on the Secondary Consolidation (하중증가율(荷重增加率)이 이차압밀(二次壓密)에 미치는 영향(影響))

  • Chee, In Taeg;Kang, Yea Mook
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.110-117
    • /
    • 1983
  • This study was conducted to investigate the influence of load increment ratio on the secondary consolidation for the marine clay at Asan bay by the hyperbola method. The results were summarized as follow: 1. Calculated secondary consolidation by the hyperbola method was slightly less than the value of Casagrande's log t method, but the difference was very little, and the secondary consolidation could be easily calculated by the hyperbola method even if load increment ratio was small. 2. The secondary consolidation ratio was increased with the decrement of load increment ratio, and the creep phenomenon of the settlement curve occurred under the condition of small load increment ratio seemed to be caused by the secondary consolidation. 3. The secondary consolidation ratio occurred during the primary consolidation was irregular in the overconsolidated range, but it was increased with the decrement of load increment ratio in the normally consolidated range. 4. The coefficient of secondary consolidation was increased with the increment of the consolidation load, made a point of the inflection near preconsolidation. And the coefficient of secondary consolidation was decreased from consolidation load $2kg/cm^2$, showed independent of load increment ratio. 5. The coefficient of secondary consolidation was showed in proportion to compression index.

  • PDF

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

Prediction and Field Measurement of Settlement due to Preloading at the Delta of Nakdong River (낙동강 삼각주에서 선행하중에 따른 침하예측 및 현장계측)

  • 정성교;백승훈;김규종;이대명
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.99-110
    • /
    • 1999
  • Settlement and consolidation time were predicted through systematic soil investigation at the delta of Nakdong river where the preloading method was applied. Field measurements were executed with well-selected instruments. As the results of the comparison, the predicted settlement on the sand layer of about 20m thick underestimated the observed one by 20%. This underestimation was due to the effects of vibration during installation of PBD, creep, the overestimated deformation modulus, and so on. For the clay layer of about 20m in thickness under the sand layer, an ID analysis for underconsolidated soil initially overestimated the observed settlement by 240%. However, when the laboratory compression curve was reconstructed and a conventional ID analysis for NC clay was applied, the re-calculated settlement of the clay layer was relatively similar with the observed one. And the predicted consolidation time was about 45% less than the observed one, because of different influencing factors.

  • PDF

Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method (입계부식법을 이용한 열화도 평가 프로그램 개발)

  • Yu, Hyo-Seon;Baek, Seung-Se;Na, Seong-Hun;Kim, Jeong-Gi;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

A Study on the Information of Landforms in the vicinity of the Hantan River (한탄강(漢灘江) 일대(一帶)의 지표기복(地表起伏)에 관한 정보(情報))

  • Kim, Joo-Hwan
    • Journal of the Speleological Society of Korea
    • /
    • no.72
    • /
    • pp.19-30
    • /
    • 2006
  • The purpose of this study is to clarified the geology and geomorphic characteristics of the Hantan River Basin. In this area, some kind of landforms are developed such as pre-land forms, lava plateau, and present landforms etc. Some river terraces are peculiar features in the area. Some conclusions are as follows : The vicinity of the Hantan River is lava plateau formed from the volcanic activity. Some steptoes are located in the lava plateau. Baekeuiri formation means the river bed boulder beneath the lava formation. The development of drainage patterns are unstable and the bifurcation ratio, the ratio of mean length of the river are lower than the other rivers. The relative height of the terraces is about $5{\sim}25m$ and the terraces are alluvial terraces. In the Jiktang Fall area, bedrock is granite and basalt plateau covered the bedrock. In that point, the old erosion surface is relatively steeper than the horizontal-basalt plateau. Vertical columnar joints are developed and weathering materials creep on the valley wall. The cross section of the landform of the Kosukjung vicinities are somewhat different from the landforms of Jiktang Fall. The bedrock near the Kosukjung is granite that is the same with the Jiktang Fall. But the cross section shows a asymmetrical curve from each side.

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.