• 제목/요약/키워드: Creep Crack Growth

검색결과 72건 처리시간 0.02초

순동의 고온에서의 크리프 균열성장 특성 (Characteristics of Creep Crack Growth in Pure Copper at Elevated Temperature)

  • 남승훈;김엄기;정민우;서창민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.495-500
    • /
    • 2001
  • The significant creep in copper takes place at relatively low temperature and applied stress. Thus the study on modeling of creep behavior using the copper should provide researchers with benefits such as time for the test. In this study, a test of creep crack growth regarding copper was performed at 400 and $500^{\circ}C$, and analyzed. As result, the crack growth rate at $500^{\circ}C$ turned out to be 10 times higher than that at $400^{\circ}C$ in terms of $C^*$, while the crack growth rate at $500^{\circ}C$ was several hundreds times higher than that at $400^{\circ}C$ in terms of K. Moreover, a linear relationship between the crack growth rate and $C^*$ at the same temperature was established.

  • PDF

크리프 역전 변수 도입에 의한 9Cr강의 크리프 피로 균열성장 거동의 평가 (Evaluation of Creep Fatigue Crack Growth Behavior of 9Cr Steel Employing Creep Reversal Parameter)

  • 마영화;백운봉;윤기봉
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1453-1460
    • /
    • 2002
  • Creep-fatigue crack growth models have been proposed employing $(C_t)_{avg}$ as a crack tip parameter characterizing the time-dependent crack growth. The basic assumptions made in these previous models were ideal creep reversal conditions such as no creep reversal and complete creep reversal condition. Due to this assumption, the applicability of the models was limited since they did not consider partial creep reversal condition which is usually observed in many engineering metals at high temperature. In this paper the creep reversal parameter, Temperature;$C_R$, which was defined by Grover, is critically evaluated to quantity the extent of partial creep reversal at the crack tip. This approach does not rely on any simplifying assumptions regarding the extent of the amount of creep reversal during the unloading part of a trapezoidal fatigue cycles. It is shown that the $(C_t)_{avg}$ value calculated for 9Cr steel agrees well with the experimentally measured one. It is argued that the extent of improvement is not significant when the result is compared with that of the conventional model which has an assumption of full creep reversal behavior.

크리프 균열 성장 실험을 위한 소성 변위 결정법 (Plastic Displacement Estimates in Creep Crack Growth Testing)

  • 허남수;윤기봉;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.

중유발전소의 재열기관 균열 해석 (Analysis of Reheater Pipe Crack for Oil Power Plant)

  • 홍성호;홍성주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.643-647
    • /
    • 2003
  • Power plant Piping operating at elevated temperature often fails prematurely by the growth of microcracks under creep conditions. Therefore, the life assessment of high temperature components that contain cracks is an important technological problem. The mechanisms of crack growth in simple metals and alloys have been investigated using both mechanical and microstructural approaches. In this study, life prediction accounting for creep, crack growth and thermal stress is analyzed.

  • PDF

고온설비의 FFS평가를 위한 308 스테인리스강의 크리프 균열성장 재료물성에 대한 연구 (A Study on Creep Crack Growth Properties of 308 SS for FFS Evaluation of High Temperature Components)

  • 이경용;백운봉;윤기봉
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.5-10
    • /
    • 2002
  • For fitness-for-service evaluation of high temperature plant components with defects, crack growth life must be assessed properly as indicated in the recent draft of API 579 code. Type 308 stainless steel has been widely used as a field weld material in the petrochemical industry. In this study, creep crack data of type 308 stainless steel are collected and re-analyzed using $C_t$ as a characterizing fracture parameter. A unique da/dt versus $C_t$ relationship was obtained despite of difference of creep deformation constant of the reviewed materials and specimen geometry of the tested specimens. The obtained results can be employed for crack growth life assessment and fitness-for-service evaluation for the cracks in high temperature components. It is also argued that since the effect of creep properties and other material variability on the creep crack growth behavior would be minor the obtained model may be applied for most of the 308 stainless steels.

P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향 (The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel)

  • 김수영;임병수
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.

몬테카를로 모사에 의한 용접 계면에서의 크리프 균열성장 파손 확률 평가 (Evaluation of Creep Crack Growth Failure Probability at Weld Interface Using Monte Carlo Simulation)

  • 이진상;윤기봉
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.61-66
    • /
    • 2005
  • A probabilistic approach for evaluating failure risk is suggested in this paper. Probabilistic fracture analyses were performed for a pressurized pipe of a Cr-Mo steel reflecting variation of material properties at high temperature. A crack was assumed to be located along the weld fusion line. Probability density functions of major variables were determined by statistical analyses of material creep and creep crack growth data measured by the previous experimental studies by authors. Distributions of these variables were implemented in Monte Carlo simulation of this study. As a fracture parameter for characterizing growth of a fusion line crack between two materials with different creep properties, $C_t$ normalized with $C^*$ was employed. And the elapsed time was also normalized with tT, Resultingly, failure probability as a function of operating time was evaluated fur various cases. Conventional deterministic life assessment result was turned out to be conservative compared with that of probabilistic result. Sensitivity analysis for each input variable was conducted to understand the most influencing variable to the analysis results. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

SUS304강의 사이클의존형에서 시간의존형균열성장으로의 천이에 관한 연구 (A Study on Transition From Cycle-dependent to Time-dependent Crack Growth in SUS304 Stainless Steel)

  • 주원식;조석수
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.38-46
    • /
    • 1996
  • High temperature low cycle fatigue crack growth behavior is investigated over a range of two temperatures and various frequencies in SUS 304 stainless steel. It is found that low frequency and temperature can enhance time-dependent crack growth. With high temperature, low frequency and long crack length, ${\Delta}J_c/{\Delta}J_ f$, the ratio of creep J integral range to fatigue J integral range is increased and time-dependent crack growth is accelerated. Interaction between ${\Delta}J_f$ and ${\Delta}J_c$ is occured at high frequency and low temparature and ${\Delta}J_c$, creep J integral range is fracture mechanical parameter on transition from cycle-dependent to time dependent crack growth in creep temperature region.

  • PDF

CrMo강 용접계면균열의 크리프-피로 균열성장거동 (Creep-Fatigue Crack Growth at CrMo Steel Weld Interface)

  • 백운봉;윤기봉;이해무;서창민
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3088-3095
    • /
    • 2000
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of lCr-5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_r$parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of (da/dt)$_{avg}$ vs. ($C_t$)$_{avg}$ for residual life assessment.

CREEP-FATIGUE CRACK GROWTH AND CREEP RUPTURE BEHAVIOR IN TYPE 316 STAINLESS STEELS- EFFECT OF HOLD TIME AND AGING TREATMENT

  • Mi, J.W.;Won, S.J.;Kim, M.J.;Lim, B.S.
    • International Journal of Automotive Technology
    • /
    • 제1권2호
    • /
    • pp.71-77
    • /
    • 2000
  • High temperature materials in service are subjected to mechanical damage due to operating load and metallurgical damage due to operating temperature. Therefore, when designing or assessing life of high temperature components, both factors must be considered. In this paper, the effect of tensile hold time on high temperature fatigue crack growth and long term prior thermal aging heat treatment on creep rupture behavior were investigated using STS 316L and STS 316 austenitic stainless steels, which are widely used for high temperature components like in automotive exhaust and piping systems. In high temperature fatigue crack growth tests using STS 316L, as tensile hold time increased, crack growth rate decreased in relatively short tensile hold time region. In long term aged specimens, cavity type microcracks have been observed at the interface of grain boundary and coarsened carbide.

  • PDF