• 제목/요약/키워드: Credit classification

검색결과 110건 처리시간 0.022초

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.

데이터마이닝 기법(CHAID)을 이용한 효과적인 데이터베이스 마케팅에 관한 연구 (A Study on the Effective Database Marketing using Data Mining Technique(CHAID))

  • 김신곤
    • 정보기술과데이타베이스저널
    • /
    • 제6권1호
    • /
    • pp.89-101
    • /
    • 1999
  • Increasing number of companies recognize that the understanding of customers and their markets is indispensable for their survival and business success. The companies are rapidly increasing the amount of investments to develop customer databases which is the basis for the database marketing activities. Database marketing is closely related to data mining. Data mining is the non-trivial extraction of implicit, previously unknown and potentially useful knowledge or patterns from large data. Data mining applied to database marketing can make a great contribution to reinforce the company's competitiveness and sustainable competitive advantages. This paper develops the classification model to select the most responsible customers from the customer databases for telemarketing system and evaluates the performance of the developed model using LIFT measure. The model employs the decision tree algorithm, i.e., CHAID which is one of the well-known data mining techniques. This paper also represents the effective database marketing strategy by applying the data mining technique to a credit card company's telemarketing system.

  • PDF

An Evolutionary Computing Approach to Building Intelligent Frauds Detection System

  • Kim, Jung-Won;Peter Bentley;Chol, Jong-Uk;Kim, Hwa-Soo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.97-108
    • /
    • 2001
  • Frauds detection is a difficult problem, requiring huge computer resources and complicated search activities Researchers have struggled with the problem. Even though a fee research approaches have claimed that their solution is much better than others, research community has not found 'the best solution'well fitting every fraud. Because of the evolving nature of the frauds. a novel and self-adapting method should be devised. In this research a new approach is suggested to solving frauds in insurance claims credit card transaction. Based on evolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new self of decision-makin rules. We believe that this new approach will provide a promising alternative to conventional ones, in terms of computation performance and classification accuracy.

  • PDF

귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우 (Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating)

  • 이상호;지원철
    • 지능정보연구
    • /
    • 제4권2호
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF

An Evolutionary Computing Approach to Building Intelligent Frauds Detection Systems

  • Kim, Jung-Won;Peter Bentley;Park, Jong-Uk
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 춘계정기학술대회
    • /
    • pp.293-304
    • /
    • 2001
  • frauds detection is a difficult problem, requiring huge computer resources and complicated search activities. researchers have struggled with the problem. Even though a flew research approaches have claimed that their solution is much bettor than others, research community has not found 'the best solution'well fitting every fraud. Because of the evolving nature of the frauds, a Revel and self-adapting method should be devised. In this research a new approach is suggested to solving frauds in insurance claims and credit card transaction. Based on evolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new set of decision-making rules. We believe that this new approach will provide a promising alternative to conventional ones, in terms of computation performance and classification accuracy.

  • PDF

사전 세분화를 통한 고객 분류모형의 효과성 제고에 관한 연구 (Improving the Effectiveness of Customer Classification Models: A Pre-segmentation Approach)

  • 장남식
    • 경영정보학연구
    • /
    • 제7권2호
    • /
    • pp.23-40
    • /
    • 2005
  • 시장에서의 경쟁이 점차 심화되고 서비스나 상품에 대한 고객들의 요구와 기대치가 증가함에 따라 기업들에 있어 과학적인 데이터 분석에 근거한 경영전략 수립 및 실행의 필요성이 어느 때보다 크게 강조되고 있다. 그러나 인적자원과 및 자금 등을 포함한 가용자원은 한정적이기 때문에 이들 자원을 얼마나 효율적으로 사용하여 효과적인 결과를 획득하는가가 기업 성패를 좌우하는 주요 지표가 되고있다. 본 연구에서는 선택과 집중적 자원 배분이라는 이슈에 초점을 맞춰 사전 세분화를 통해 선정된 고객 군만을 대상으로 고객의 특성을 파악하고 관리하는 방안이 전체 고객을 대상으로 하는 것보다 보다 의미가 있다는 것을 실제 현업데이터를 통해 검증하고자 하였다. 이를 위해 카드사, 이동통신사, 보험사의 고객 인적데이터 및 거래데이터를 수집하였고, 통계분석과 현업전문가의 의견을 수렴해 고객 세분화를 수행하였으며, 각 세분 군별로 데이터마이닝의 의사결정나무 기법을 이용해 해지모형을 구축하여 전체 고객을 대상으로 한 모형과 정분류율과 규칙의 간결성 측면에서 비교 평가하였다. 결과적으로 세분 군별 해지모형이 전체 고객대상 모형에 비해 정분류율은 높거나 비슷한 수준을 유지하면서 보다 간결하고 의미있는 규칙을 제공하였다.

정규혼합분포를 이용한 ROC 분석 (ROC Curve Fitting with Normal Mixtures)

  • 홍종선;이원용
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.269-278
    • /
    • 2011
  • 스코어 변수의 민감도와 특이도와의 관계로 표현한 ROC 곡선을 더욱 정확한 진단을 위하여 분포함수와 공변량을 고려한 연구가 많이 진행되었다. 공변량을 고려하는 회귀분석 방법을 사용하였으며 이때 분포함수를 정규분포로 가정하거나 잔차의 분포함수를 추정하여 ROC 분석을 하였다. 본 연구는 분포함수가 주어지지 않으며 진단에 영향을 주는 공변량을 모르는 일반적인 상황에서 논의하였다. 확률변수인 스코어와 두 개의 보모집단으로 구성된 신용평가 자료에 적합한 분포함수를 추정하기 위하여 여러 개의 정규분포가 혼합된 정규혼합분포를 사용하여 ROC 분석을 한다. 고전적인 비모수적이고 경험적인 ROC 곡선에 적합한지를 파악하기 위하여 AUC 통계량을 사용하여 비교하며, 본 연구에서 제안한 정규혼합분포를 이용한 ROC 곡선이 다른 방법으로 구한 ROC 곡선보다 적합함을 보였다.

로지스틱모형에서의 주성분회귀 (Principal Components Regression in Logistic Model)

  • 김부용;강명욱
    • 응용통계연구
    • /
    • 제21권4호
    • /
    • pp.571-580
    • /
    • 2008
  • 로지스틱회귀분석은 고객관계관리나 신용위험관리 등의 분야에서 많이 사용되는 기법인데, 이러한 분야에서의 로지스틱회귀모형에는 연관성이 높은 설명변수들이 다수 포함되어 다중공선성의 문제를 유발하는 경우가 있다. 다중공선성이 존재하는 상황에서 최우추정량은 심각한 결함을 갖는다는 사실은 잘 알려졌다. 이 문제를 해결하기 위하여 로지스틱주성분회귀를 연구하되, 분석상의 주요 과정인 주성분 선정을 위한 방법을 새롭게 제안하였다. 추정량의 분산을 최소가 되게 하는 상태지수 값을 측정하고, 이 값에 영향을 미치는 주요 요인들을 컨조인트분석에 의해 파악하여 주성분 선정기준을 결정하는 모형을 구축하였다. 제안된 방법은 다중공선성 문제를 적절히 해결하면서도 모형의 적합성을 향상시킨다는 사실이 모의실험을 통하여 확인되었다.

AUC 최적화를 이용한 낮은 부도율 자료의 모수추정 (Parameter estimation for the imbalanced credit scoring data using AUC maximization)

  • 홍종선;원치환
    • 응용통계연구
    • /
    • 제29권2호
    • /
    • pp.309-319
    • /
    • 2016
  • 이항 분류모형에서 선형 스코어의 함수인 리스크 스코어를 고려하고, 선형 스코어의 계수를 추정하는 문제를 고려한다. 계수를 추정하는 대표적인 방법으로 로지스틱모형을 이용하는 방법과 AUC를 최대화하여 구하는 방법이 있다. AUC 접근방법으로 구한 모수 추정량은 로지스틱모형을 이용한 선형 스코어의 모수의 최대가능도 추정량보다 자료가 로지스틱 가정이 맞지 않는 일반적인 상황에서도 좋은 추정 결과를 보인다. 본 연구에서는 신용평가모형에서 흔히 접하는 정상보다 부도 경우가 현저하게 작은 상태인 낮은 부도율의 자료를 고려하고, 낮은 부도율의 자료에 AUC 접근방법을 적용한다. 부도의 비율이 정상의 비율보다 현저하게 낮은 불균형 자료를 생성하기 위하여 수정된 로짓함수를 연결함수로 사용한다. 낮은 부도율의 상황인 불균형 자료에 AUC 접근방법을 적용한 판별결과가 로지스틱 모형 추정방법보다 동등하거나 더 나은 모수추정 결과를 보이는 것을 확인하였다.

퍼지 결정트리를 이용한 패턴분류를 위한 데이터 마이닝 알고리즘 (Data Mining Algorithm Based on Fuzzy Decision Tree for Pattern Classification)

  • 이중근;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권11호
    • /
    • pp.1314-1323
    • /
    • 1999
  • 컴퓨터의 사용이 일반화됨에 따라 데이타를 생성하고 수집하는 것이 용이해졌다. 이에 따라 데이타로부터 자동적으로 유용한 지식을 얻는 기술이 필요하게 되었다. 데이타 마이닝에서 얻어진 지식은 정확성과 이해성을 충족해야 한다. 본 논문에서는 데이타 마이닝을 위하여 퍼지 결정트리에 기반한 효율적인 퍼지 규칙을 생성하는 알고리즘을 제안한다. 퍼지 결정트리는 ID3와 C4.5의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법이다. 특히, 퍼지 규칙은 속성 축에 평행하게 판단 경계선을 결정하는 방법으로는 어려운 속성 축에 평행하지 않는 경계선을 갖는 패턴을 효율적으로 분류한다. 제안된 알고리즘은 첫째, 각 속성 데이타의 히스토그램 분석을 통해 적절한 소속함수를 생성한다. 둘째, 주어진 소속함수를 바탕으로 ID3와 C4.5와 유사한 방법으로 퍼지 결정트리를 생성한다. 또한, 유전자 알고리즘을 이용하여 소속함수를 조율한다. IRIS 데이타, Wisconsin breast cancer 데이타, credit screening 데이타 등 벤치마크 데이타들에 대한 실험 결과 제안된 방법이 C4.5 방법을 포함한 다른 방법보다 성능과 규칙의 이해성에서 보다 효율적임을 보인다.Abstract With an extended use of computers, we can easily generate and collect data. There is a need to acquire useful knowledge from data automatically. In data mining the acquired knowledge needs to be both accurate and comprehensible. In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of non-axis-parallel decision boundaries, which are difficult to do using attribute-based classification methods.In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets including the IRIS data, the Wisconsin breast cancer data, and the credit screening data. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.