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ABSTRACT

rauds detection is a difficult problem, requiring huge computer resources and complicated search activities.
Researchers have struggled with the problem. Even though a few research approaches have claimed that their solution is
nuch better than others, research community has not found 'the best solution' well fitting every fraud. Because of the
wvolving nature of the frauds, a novel and self-adapting method should be devised.

n this research a new approach is suggested to solving frauds in insurance claims and credit card transaction. Based on
wolutionary computing approach, the method is itself self-adjusting and evolving enough to generate a new set of
lecision-making rules. We believe that this new approach will provide a promising alternative to conventional ones, in

erms of computation performance and classification accuracy.

. An Intelligent Financial Fraud Detection
System

[his research aims to discover fraudulent patterns in a
arge insurance and credit card transaction databases.
[his aim is achieved by developing a hybrid Fuzzy-
Tenctic programming system. The developed system is
ble to classify home insurance claims and credit card
ransactions into "suspicious" and "nom-suspicious"
Jasses. This section describes the details of developed
ystem and its evaluation results based on various
'valuation criteria.

ohn Koza (1992) developed a genetic programming(GP)
or the purposc of automatic programming, which allows
:omputer programs to evolve by themselves. GP differs
rom other evolutionary algorithms in three main aspects:
ndividuals are represented by tree-structure, crossover
wrmally generates offspring by concatenating random
ubtrees from the parents, and individuals are evaluated
yy executing them and assessing their function. Like all
wvolutionary algorithms, GP maintains populations of
olutions. These are evaluated, the best are selected and
offspring' that inherit features from their 'parents' are
reated using crossover and mutation operators. The new
olutions are then evaluated, the best are selected, and so
m, until a good solution has evolved, or a specific
wmber of generation have passed.

‘here are some recent works which employe especially
iP for the evolution of classification rules (Koza et al,
998), (Raymer et al., 1996), (Ryan et el,, 1998), and
Ryu and Eick, 1996). It takes advantage of the
lexibility of GP that can adopt various functions sets,

such as negation, larger-than, etc for a rule operator set.
This flexibility allows its phenotypes, classification rules,
to express more complex conditions and results in
producing a smaller number of rules. However, this
expressive power often generates rules which are very
difficult to understand and thus the intelligibility of
evolved rules is very low. This research focused on
tackling this problem. Qur system chooses the GP as its
main mle learning engine mainly because of its
expressive power. We provides the intelligibility of
evolved rules by controling crossover points and mates
for applying genetic operators. The more details about
these methods will be discussed in Section 2, The

Evolutionary-Fuzzy Evolver for financial fraud
detection.
2. The Evolutionary-Fuzzy Evolver for

Financial Fraud Detection

The systern developed in this research comprises two
main components: a Genetic Programming(GP) search
engine and a fuzzy expert system. The overall system
overview is illustrated in figure 1. This chapter describes
the system overview of developed fuzzy rule evolver and
the details about this system.

2.1 The System Qverview

Before the details of evolutionary-fuzzy evolver system
are described, the overview of this system is briefly
described. The system starts by taking training data,
which has both "fraudulent" and "non-fraudulent” class
examples. The training data is immediately passed to the
clusterer and the  clusterer classifies  each
attribute(=colurmm) values into three groups. The system
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describes each attribute value with one of these fuzzy
sets: 'LOW', 'MEDIUM' and 'HIGH' and the clustering
stage is necessary to define the possible attribute value
ranges of these three fuzzy sets. The cluster passed three
generated clusters of each attribute to the fuzzy expert
system. The fuzzy expert system defines fuzzy

membership functions and their possible ranges based on
the generated clusters.. The fuzzy expert system fuzzifies
the attribute values of each training item according to the
fuzzy membership functions. Then, a GP engine starts
evolution by being seeded with random genotypes. The
generated genotypes are mapped into phenotypes, which

are fuzzy rules. These fuzzy rules are evaluated by being
applied to the fuzzified training data in the fuzzy expert
system. The results of this procedure return to the GP
engine as the defuziffied scores and these scores are
evaluated by fitness functions. The estimates fitness
scores allow the GP to select fitter phenotypes and
reproduce their genotype offsprings. These new
genotypes are passed the fuzzy expert system and
repeates their evaluation, selection and reproduction until
the evolved rules show the certain performance or
maximum number of repeats(=generations).

When started, the system first clusters each column of
the training data into three groups using a one-
dimensional clustering algorithm. A number of clusterers
are implemented in the system, including C-Link, S-Link,
K-means (Hartigan, 1975) and a simple numerical
method (in which the data is sorted, then simply divided
into three groups with the same number of items in each
group). This paper investigates the last two of these
methods in the system. Once selected by the user, the
same clusterer is used for all learning and testing of the
data.

After every column of the data has been successfully
clustered into three, the minimmm and maximum values
m each cluster are found, see fig. 2. These values are
then used to define the domains of the membership
functions of the fuzzy expert system.

Figure 2: Data is clustered column by column to find the
fuzzy membership function ranges.

2.2 Define Fuzzy Membership Functions

The fuzzy rules are used in this research for increasing
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the intelligibility and we select the simplest and the most
comprehensive three fuzzy sets.: 'LOW', 'MEDIUM' and
'HIGH'. In order to use these linguistic terms directly to
collected numeric data, the clustering stage described in
the previous section was necessary. The data attributes
have wide ranges of values and they are clustered into
three groups using a k-mean clustering algorithm. Since
cach attribute has different range of values and features,

the ranges of generated clusters for an individual
attribute are very different The three cluster ranges of
single attribute are used for defining the ‘'degree of

membership’ of three fuzzy sets for the attribute. This
results in providing various ranges of fuzzy set definition
(more precisely fuzzy membership function values)
according to a given attribute.

N T,
Figure 3: The three types of membership functions used by the system:
non-overlapping (left), overlapping (middle), smooth (right).

As we introduced before, the degree of membership for
each fuzzy set is defined by a given fuzzy membership
function and there are several different shapes of fuzzy
niembership functions. The system developed in this
research provide three various fuzzy membership
functions: 'non-overlapping', 'overlapping' and 'smooth’,
shown in figure 3. The first two functions are standard
trapezodal functions and the third one returms a smoother,
more gradual set of 'degree of membership' by taking the
arctangent of the input.

The different function shapes of these three different
functions determines the various definition of each fuzzy
set. For the 'non-overlapping' functions, when a specific
attribute value belongs to a cluster, they return the
membership value 1.0 to the corresponding fuzzy set and
0.0 to the other two fuzzy sets. For instance, if an
attribute value 1s included in the cluster having the
lowest range of values, this value would be fuzzified into
(1.0, 0.0, .0.0) for 'LOW', MEDIUM' and 'HIGH' fuzzy
sets, respectively. Because the shape of 'non-overlapping'
fuzzy membership function restricts the output areas
between two adjacent fuzzy sets to be nearly non-
overlapped, it is very usual for given attribute value
falling into strictly only one fuzzy set. In other words, it
generates the identical fuzzy membership values (1.0,
0.0, .0.0), (0.0, 1.0, 0.0) or (0.0, 0.0, 1.0) to most of
attribule  values. In  contrast, the second fuzzy
membership  'overlapping' function widen the
overlapping areas between neighboring fuzzy sets and
more versatile fuzzified membership values can be
expected. This means that a value towards the outer
degree of the '"LOW' fuzzy set might be fuzzified into
(0.8, 0.2, 0.0) instead of (1.0, 0.0, 0.0). Finally, the last
'smooth' functions expands the overlapping areas among
three fuzzy sets even more. For instance, even when a
value resides on the center of 'LOW' fuzzy set area, this
fuzzy membership function returns the fuzzified value

(0.98, 0.02, 0.0) signaling somehow the value locating at
a much nearer point from the ™MEDIUM' set than the
'HIGH' set.

In summary, when a training example is provided to the
system, it fuzzifies all attributes of this example
according to a selected fuzzy membership function. and
the fuzzy set ranges are determined by clusterers
generated using the k-mean clustering algorithm.

2.3 Evolving Rules

When fuzzified data is passed to a GP engine and the
fuzzy rule evolver starts the rule evolution, The rule
evolution by the GP is required to pass a number of
important stages to achieve its task, generating fuzzy
rules classifying fraudulent data and non-fraudulent data.

2.3.1 Genotypes and Phenotypes

The operation of natural evolution can be understood by
the evolution of a set of coded instructions for how
organisms should be grown (Bentley, 97). That is to say,
the genetic operators to drive the natural evolution are
not applied directly on organisms. Rather, they are
applied on a set of coded instructions: DNA. According
to these instructions, the organisms evolve and appear to
have various types of patterns. In order to understand the
natural evolution clearly, it is necessary to distinct DNA
from the evolved organisms based on their DNA. The
former is known as a genotype and the latter is called as
a phenotype.
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Figure 4: An example genotype used by the system.
The genotypes consist of variable size trees, where each
node is comprised of a binary number and a flag
indicating whether a node is binary, unary or a leaf. A
binary node has two branches (left and right), a unary
node has one branch (left or right) and a leaf node is a
terminating node of given branch. When evolution starts,
genotype genes with tree structures are randomly
generated and the created genotype genes are usually
have no more than three binary and four unary nodes.
We restrict of tree size at the start to avoid the generation
of unnecessarily long depth of trees. These genotype
genes are immediately mapped into phenotype genes in
order to be evaluated. Fig.4 shows the mapping of
genotype genes in Fig. 4 into the phenotype genes, which
are in a form of fuzzy rules:

(IS MEDIUM (Height OR IS LOW Age) AND
IS MEDIUM Age).

system employes two binary functions: 'OR' and 'AND,
four unary functions: 'WOT', 'IS_LOW", 'IS_MEDIUM',
TS_HIGH'. Each leave of tree indicates a single attribute
and the system restricts the number of leaves up to 256.
An individual genotype tree is easily interpreted into a
fuzzy rule by reading a given node type and translate
binary value into tenary value.

2.3.2 Rule Evaluation

Every chromosome containing phenotype genes, which
is a fuzzy rule, is evaluated by applying it to the fuzzified
training data. This work is performed by a fuzzy expert
system. The results of this work 1s returned in a
defuzzified score between 0 and 1 for every fuzzified
data item. Then, these defuzzified scores are assessed by
four different fitness functions:

- Low misclassification rate: minimize the number of
misclassified  examples. The  misclassified
examples are those which have the defuzzified
scores larger than 0.5 when they are 'non-
fraudulent’ items. In fact, this is the case when 'non-
fraudulent' case is misclassified as 'fraudulent' case.

The systemn regards the item with the defuzzied
score close to 1 as 'fraudulent' case.

- Maximize the distinction between 'non-fraudulent'
and 'fraudulent' classes: to distinct two classes, this
fitness function measures the average defuzzified
scores for correctly classified 'fraudulent’ cases and
the average defuzzified scores for correctly
classified 'non-fraudulent' cases. As the difference
of these two average scores increase, this fitness
score becomes higher.

- Assign a high priority to detect 'fraudulent' items
more: the system considers the detection of
'fraudulent’ cases more importantly. Thus, this
fitness function assess the sum of scores for
"fraudulent’ cases and assign higher fitness value
when this score gets higher.

- Increase the intelligibility: in order to increase the
intelligibility, the system penalizes the length of
any fuzzy rules that has more than four identifier,
which are binary, unary or leaf nodes. By doing so,
the system ensures that the evolved rules always
have the readable length of condition parts and also
can prevent the bloat caused by the GP.

One distinct feature of our evolutionary fuzzy evolver is
that it has multiple fitmess functions to collectively
satisfy the desired function of the system. Most of real
world problems require more than one subtask to be
fulfilled due to its complicated nature. However, this
feature causes a major problem for the standard GA. It
usually cannot cope with more than one fimess value per
phenotype(Goldberg, 1989). The standard GA equips
only one fitness value for every individual in the current
population of solutions. This value represents how well
its corresponding solution satisfies the goal of a given
problem. According to the estimated fitness values, the
GA can select fitter ones and gives higher chances to
reproduce their offsprings which inherit some features of
original solution. The problem is raised when the GA
tries to select the fitter ones based on calculated fitness
values. In order to do so, the GA should apprehend the
single relative fitness value of each candidate solution
for comparison even when each individual has multiple
fitness values. The question is how can we make the GA
to define a single fitness value that represents the
aggregation of multiple fitness values accurately?

Bentley and Wakefield(1997) developed the Sum of
Weighted Global Ratios(SWGR) method to tackle this
problem and showed its successful results in their
evolutionary design system. The system developed in
this research also employs this approach. To define the
overall finess values from multiple fitness values, the
SWGR first scales each fitness value using the effective
ranges of each function. Since the input of each fitmess
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function shows different range of possible values, this
scaling is perforemed first. For example, for a given
individual 7, the scaling is simply done by

fitnessValue, — min( fitnessValue)

fitnessRatio = :
max( fitnessValue) — min( fitnessValue)

Then, the normalized fitness values are multiplied by
importance values defined by system users. The basic
notion of importance is that even though the final goal is
achieved by satisfying the multiple subtasks, the relative
importance of each subtagk will be different and this
difference can be defined by the users according to their
perceived task priority. For instance, if the user specified
that the second criteria should be twice as important, all
fitness ratios corresponding to the second criteria are
simply multiplied by two. Finally, SWGR sums these
importance weighted global fitness ratios and generates
the single global fitness values.

2.3.3 Rule Generation

Genetic Operators

Child tules are generated using one of two forms of
crossover. The first type of crossover emulates the
single-point crossover of genetic algorithms by finding
two random points in the parent genotypes that resemble
each other, and splicing the genotypes at that point. By
ensuring that the same type of nodes, in approximately
the same places, are crossed over, and that the binary
numbers within the nodes are also crossed, an effective
exploration of the search space is provided without
excessive disruption (Bentley & Wakefield, 1996). The
second type of crossover generates child rules by
combining two parent rules together using a binary
operator (an AND or OR). This more unusual method of
generating offspring (applied approximately one time out
of every ten instead of the other crossover operator)
permits two parents that detect different types of
suspicious data to be combined into a single, fitter
individual. Mutation is also occasionally applied, to
modify randomly the binary numbers in ¢ach node by a
single bit.

Selection

The GP system employs population overlapping, where
the worst Pn% of the population are replaced by the new
offspring generated from the best Pm%. Typically values
of Pn = 80 and Pm = 40 seem to provide good results.
The population size was normally 100 individuals.

Modal Evolution

Each evolutionary run of the GP system (usually only 15
generations) results in a short, readable rule which
detects some, but not all, of the suspicious data items in
the training data set. Such a rule can be considered to
define one mode of a multimodal problem. All items that

are correctly classified by this rule (recorded in the
modal database, see figure 1) are removed and the
system automatically restarts, evolving a new rule to
classify the remaining items, The parameter nich size
specifies the number of "fraudulent” data items sought to
be classified in each run. This enables monitoring of
over-fitting: the fimess is correlated with the number of
class members classified by a rule as well as the number
miss-classified.

Modal Re-Evolution

In addition to the process of modal evolution, the system
re-examines each mode already classified by a rule; it
attempts to improve the rule by ignoring all data except
that characterized (and mis-classified) by the rule already.
This provides a shrinking environment, with the
associated gains: a 'purer’ gene pool of solutions for each
archtype is facilitated, and accelerated search.

Nested Evolutionary Search

After shrinking the environment(reducing the number of
claims again which a rule is tested) the system can
recluster and carry out a finer search. This process of
modal evolution continues until every suspicious data
item has been described by a rule. However, any rules
that misclassify more items than they correctly classify
are removed from the final rule set by the system.

3. Experiments and Results
3.1 Data

As with any real-world problem, classification of real
data is often far removed from the clean, perfect world of
mathematical theories. Data is usually noisy, inconsistent
and sometimes inadequate. Even though intelligent
techniques such as GP and fuzzy logic can handle such
characteristics better than many approaches, significant
data preprocessing will always be required.

3.1.1  Preprocessing the Data

(Lloyds/TSB INSURANCE DATA)
The insurance data used for this work was no exception.
The data came from numerous sources within the bank,
resulting in two somewhat incompatible files. One file
contained 98 cases of suspicious insurance claim, each
with 73 fields (this was assembled from numerous
different files provided). The other contained 20,000
cases of unknown insurance claims (that might or might
not be suspicious), each with 36 fields. The fields
comprised items such as policy number, claim number,
date of birth, policy type, etc. However, the two files had
very few fields in common. Even after constructing some
new fields by processing others in different formats, only
14 common fields in both files could be found.

Once all non-corresponding fields were removed, we
were left with two files, one containing 98 claims, each
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with 14 fields, the other containing 20000 claims, each
with the same 14 fields. The data for every pair of fields
was then converted into the same format (for example,
dates were initially stored in different formats, different
codes were used, etc). Missing values in the files were
replaced by random values within the range of normal
values for each field. (Attempting to classify data with
missing values is difficult, so it is simpler to fill the gaps
with random values. This has the effect of adding a small
level of noise to the data in this case 1.07% overall
However, the distribution of missing values, and hence
noise per field was not even it varied from 0% to 17%.
By keeping a record of the percentage noise per field, the
reliability of evolved rules that use the noisiest fields can
then be reduced. Note that additional noise in the form of
errors within the data was also evident.)

Figure 5 Chart showing the first 250 values, for a field
related to the date. Note how the suspicious values in the
first 49 are much lower on average than the unknown
values in claims 50 upwards.

In an attempt to extract more information from the data,
and give the classifier a better chance of success, six new
fields were created by processing existing fields. For
example a new field called days before claiming was
constructed by subtracting values in the field accident
date from the values in the field notified date.

A training and test data file was constructed, each
containing 49 suspicious claims and 10000 unknown
(alternate claims taken from the original files). A series
of experiments were then performed using the
evolutionary fuzzy system. The results were suspiciously
good  indeed, accuracy was 100%. From these
experiments it became clear that inconsistencies in the
data were proving considerably more useful as indicators
of fraud than anything else. The disparity was mainly
caused by the fact that the 98 cases of suspicious claim
were gathered over a period of some years, whilst the
unknown data was gathered over a recent period of three
months. Any field that varied according to the date was
therefore lower, on average, for the suspicious fields
compared to the unknown. By plotting charts of each
field, it was simple to discover that this adversely

effected six of fields, e.g. see fig. 5.

While it is possible that variations on the frequency of
fraud may depend on absolute values of dates (e.g.
perhaps fraud becomes more likely during a particular
month of a year, or following a television programme on
how te do fraud), this was seen as unlikely. It was
therefore more desirable to attempt to find more generic
indicators of fraud, not those dependent on absolute
times or specific policy numbers. Consequently, all six
fields were deleted (and a seventh which had the same
value for all claims was also removed), leaving thirteen
fields in each data item. Information was not lost,
however. The new fields mentioned earlier contained
relative date information, so the data contained within
five of the deleted fields was still available (with the
benefit that the time biases were removed, as differences
between fields were used, rather than absolute values).
Credit Card Company DATA

The data used in this work was gathered from a credit
card company in England. Even though the company
provided real credit card transaction data for this
research, it required that the company name was kept
confidential. The data was gathered from Jamuary to
December of 1995 and a total of 4000 transaction records
were provided, each with 96 fields. 62 fields were
selected for the experiments. The excluded 34 fields
were regarded as clearly irrelevant for distinguishing the
credit status. (Examples include the client code number
and the transaction index number.) The details of
selected field names were not allowed to be reported. In
order to allow the fuzzy rule evolution of the system, the
collected data was labeled as suspicious or non-
suspicious, These labels were made by following the
heuristic used in the credit card company. Specifically,
when the customers payment is not overdue or the
number of overdue payment is less than three months,
the transaction is considered as non-suspicious,
otherwise it is considered suspicious.

To prepare a training set and a test set, we employed a
simple cross-validation method. We held one-third of the
data for testing and used the remaining two-thirds for
training. The system executed its rule-evolution three
times on three different training data sets. For each run,
the system replaced the training set with the other third
of the data set. This cross-validation was performed in
order to ensure the evolved rule sets were not biased by a
certain group of training set. By comparing the three
different evolved rules based on three different groups of
training data set, the final rule set is expected to represent
the features of the entire data set. Unfortunately, the
distribution of collected credit card transaction data was
not even for each class. It had a larger number of
examples for the "non-suspicious” class than for the
"suspicious” class. The total number of items belonging
to the smaller size of "suspicious" class was 985, This
number is large enough to be divided into three subsets.
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Thus, the four committee members with identical
experiment setups were run three times on each data

subset respectively. The examples included in each set
are shown in Table 1.

Table 1. Credit card data distribution for three experiments. The number in this table shows
the IDs of examples belonging to each set. Exp stands for the experiment.

Exp "SUSPICIOUS" "NON-SUSPICIOUS"
Training Test Training Test
1 1-656 657-985 1-2000 2000-3015
329-985 1-328 1001-3015 1-1000
3 657-985 & 1-328 329-656 2001-3015 & 1-1000 1001-2000

3.2 Experiments

With the requirements for a good fraud-detection System
in mind, this section describes a series of experiments
designed to evaluate these key capabilities of the system.
The experiments investigate three aspects of the system:
the effect of using different membership functions and
fuzzy operators, the effect of using different clusterers,
and the ability of the system to cope with noisy data. For
all three sets of experiments, the intelligibility of results,
processing time, and accuracy of detection are assessed.

3.2.1 Experiment Setup

To allow comparison of this system with other
techniques reported in the literature, the fuzzy rule
evolver was applied to two standard data sets for all
experiments: the Iris and Wisconsin Breast Cancer data
sets.

The Tris data 1s perhaps the best known database to be
found in the pattern recoguition literature according to
the information provided by UCI with the data and it
comprises a simple domain of 150 instances in three
classes, each of 50 items. Data items have four attributes;
there are no missing values. Because the 'Setosa class' is
linearly separable from the other two classes, for all
experiments the system was set the harder task of
detecting the "Virginica' class from the 'Versicolour' and
'Setosa' classes combined. Training and test data files
were prepared by splitting the data set into two (taking
alternate data items for each file). Misclassification rates
for this data set are normally reported as 0% for the
Setosa class and very low for the other classes in the
literature e.g. (Dasarathy, 1980).

The Wisconsin Breast Cancer data is a more complex
data set, comprising 699 instances in two classes:
Malignant (241 data items) and Benign (458 items).
There are 16 missing values in the data, which were
filled by random numbers. The training and test data sets
were constructed by splitting the file into two, taking
alternate values. (For the sake of symmetry, one
Malignant item was discarded and two Benign items
duplicated, resulting in two sets of 350 data items, each

with 120 Malignant.) Results reported in the literature
include accuracies of 93.5%, 95.9% (Wolberg, and
Mangasarian, 1990), and 92.2% (Zhang, 1992).

50 trials were run for each experiment, with the average
and best accuracies reported here. Percentage accuracy
of detection was found by calculating:

100(Misclassifiedltems + Unclassifiedltems)
Totalltems

100 -

was measured in terms of the average number of rules
evolved - the fewer the rules, the more intelligible the
result. Average processing speed was measured In
seconds (and includes the negligible time taken to apply
the completed rule set to both data sets).

The fitness functions reported in section 3.3.2 were used
without change for all experiments. Importance rankings
(Bentley & Wakefield, 1997) were set as 0.5, 2.0, 1.0
and 0.5 for fitness functions one to four, respectively.
Mutation of a single bit occurred with a probability of
0.001 in each genotype. Population sizes of 100 were
used, and each modal evolutionary run was for exactly
15 generations. The K-Means clusterer was used in the
system (unless otherwise stated). Experiments were run
on a PC with a 233Mhz AMD K6 processor.

322  Experiment 1: Investigating The Effects of
Committee-Decisions for Insurance Data

As should be apparent, the task of detecting genuine
patterns of fraud using the data provided was not trivial.
Indeed, although the data was now in a fit state to be
used by a classifier, there still remained the problem of
the unknown data set. Lloyds TSB suggested that up to
5% of the items in this set might be suspicious, but
which claims and exactly how many was unknown. To
tackle this problem, three sets of experiments were
performed with the committee decision system. The first
experiment assessed the ability of the system to find
rules indicative of suspicious items, without those
patterns describing any unknown items. The second
experiment assessed how well the system could find
suspicious rules that also detected up to 5% of the

-299 -



unknown items. The third experiment assessed the ability
of the system to find rules that detected suspicious items
and up to 10% of the unknown items. (Note that although
the system does report which claims in the unknown data
set were found to be suspicious, these results cannot be
provided here.)
Each experiment used four setups of the system:
1. standard fuzzy logic with non-overlapping
membership functions
2. standard fuzzy logic with
membership functions

overlapping

Table 2

3. membership-preserving fuzzy logic with
overlapping membership functions

4. membership-preserving fuzzy
smooth membership functions

logic  with

All four committee members were trained on one file and
tested on the other, then trained on the second and tested
on the first. This resulted in 24 different rule sets being
generated for this problem, each with different levels of
intelligibility and accuracy.

Intelligibility (number of tules) and accuracy (number of correct classifications of suspicious items) of rule

sets for test and training data. Accuracy rates are listed as n, m where n = number out of 49 correctly classified in class
1, m = number classified out of 10,000 in class 2. Results are given for training on filel, testing on file2 and training on

file2, testing on filel.

Table 3 Best results as reported by commuttee decision maker.
i A

. R

Table 4 Frequencies of fields in all rule sets and reliability of fields (based on noise caused by filling missing values).
Note that NOT IS X field is expanded to IS_Y Field or IS Z Field and IS LOW 1S _LOW is translated to IS HIGH for

I

mB—fuzzz logic_
_

I
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Table 2 and 3 present the results of the experiments. It
should be apparent in Table 1 that no committee member
managed to find useful rules that detect 0% suspicious
claims in the unknown set indeed most failed to
generate any valid rules at all. When up to 5% or 10%
suspicious claims are assumed to exist in the unknown
data set, accuracy rates increase dramatically. As Table 2
explains, committee members [A] and [D] provide the
most accurate and intelligible classifications for all
experiments with this data. The best accuracy overall is
achieved by [A], finding 61 out of 98, or 62% of the
suspicious claims, whilst suggesting that 1339 out of
20000, or 6.7% of the unknown claims are also
suspicious. But the most accurate and intelligible rule
sets are generated by [D], with most rule sets containing
just a single rule. Overall, the best rule set as reported by
the committee decision maker is:

(IS_LOW Field8 OR Field3)

which can be translated as: If either the value for field8 is
low or the value for field3 is high, then in 57% of
observed cases the claim will be suspicious. This rule
suggests that 3.8% of the unknown claims are suspicious.

Further analysis can be performed by examining the
occurrences of fields in the evolved rules, see table 4. In
general, the tally of field occurrences in the rules as
shown above indicates that suspicious claims seem to be
more likely when:

Fields 1, 5, 7, 9 and 13 are medium or high
Fields 2,3,4 and 6 are high

Field 8 is low or high

Fields 11 and 12 are low or medium

Interestingly, the only field with significant levels of
noise Field10 is hardly used for classification in the rules.
The table also shows that Field3 seems to provide the
single best indication of suspiciousness. Indeed, even
used on its own, the rule:

IS LOW IS_LOW Field3
which in mp-fuzy logic should be translated as:
ISVERYHIGH Field3

is capable of detecting 54 out of 98 suspicious claims.

3.2.3  Experiment 2: Investigating The Effects of
Committee-Decisions for Credit Card Data

Three sets of experiments were performed with the
committee decision system and the four different setups

of fuzzy rule evolver were run for each experiment:

1. Standard fuzzy logic with non-overlapping
membership functions

2, Standard fuzzy logic
membership functions

3. Membership-preserving fuzzy logic with
overlapping membership functions

4. Membership-preserving fuzzy logic with
smooth membership functions

with overlapping

All four committee members were trained on one
selected training set and test set. This resulted in
different rule sets being generated for this problem, each
with different levels of intelligibility and accuracy.

Table 5 presents the results of the experiments. The
accuracy of the system is described by a True Positive
(TP) prediction rate and a False Negative (FN) error rate.
The TP is the rate that the predicted output is
“suspicious” class when the desired output is
"suspicious” class. The FN is the probability of which
the predicted output is "suspicious” when the desired
output is "non-suspicious” class. The desired system will
have a high TP and a low FN.

As Table-5 explains, committee member [B] provides
the most accurate and intelligible classifications for all
experiments with this data, The best accuracy overall is
achieved by [B], detecting 100% of the suspicious claims
for both on the training and the test set, whilst showing
that 5.79% of false negative error, which is relatively low,
In addition, the most accurate and intelligible rule sets
that are generated by [B] contain just three rules. Overall,
the best rule set as reported by the committee decision
maker 1s for experiment 2:

(IS_LOW f1eld57 OR field50)
IS_MEDIUM field56
(field56 OR field56)

and for the experiment 3:

(Filed49 OR Field56)
(IS_LOW Field26 OR field15)
IS MEDIUM field56

These best rule sets are clearly dominated by the field56.
This implies that this field seems to be the single best
indicator of suspicious case. In summary, the prediction
results of these best rule sets are satisfying in terms of
the accuracy and intelligibility.
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Table 5 Intelligibility (number of rules) and accuracy (number of correct classifications of suspicious itemns) of rule
sets for test and fraining data. R shows the number of rules in the generated rule set and TP and FN is represented in %.

Iﬁ(p [A] Fuzzy Logic with [B] Fuzzy Logic with [C] MP-Fuzzy Logic with[[D] MP-Fuzzy Logic with
non-overlapping MFs  overlapping MFs overlapping MFs smooth MFs
R raining [Test raining [Test R [Training Test Training Test
TP [FN TP [FN FFN P [FN TP FN TP FN TP FN (TP FN
Yo 1% % % % Yo % % Y% Yo % % Y % Y% %
1 B 6.093.81]104B35p 100 0 [100 [83.1 16 [10.915.791100 1100 I5  18.6 [5.79 42.5 [10.3 ]
2 2 44.1 1579 47.8 9.45 3 100 [1.67 99.7 6.38 3 1.37 5.64 997 100 (10 W41.6 |5.79 47.6 |12.5
3 3 46.8 5.18 16.9 6.09 3 100 5.78 [100 5.79 1.67 5.64 186.9 100 ]16  42.7 5.94 42.9 ]6.&

Another interesting observation is that the results of
experiments rapidly change depending on the specific
experiment setup. While [B] setup always generated the
good rule sets, [C] setup provided almost meaningless
rule sets, which showed nearly random prediction results.
The setup [D] showed the consistent results, which the
differences of TP and FN for both the training and the
test sets are within 6%, but the best result is not
satisfying. These results show again the large variance of
committee member performance and illustrate the
validity of the committee-decision maker approach for
this problem.

In addition, from [A] and [B]s results, it could be implied
that the data set used in the experiment 1 seems to have
somewhat different characters from other two data sets.
The quite large difference, about 40% for TP in [A] and
80% for FN in [B] represent that the importance of data
sampling during the fuzzy rule evolution stage.

4. Conclusion

This research has investigated the use of a genetic
programming system to evolve fuzzy rules for the
purpose of detecting suspicious data amongst normal
data. The system contains many novel elements,
including a crossover operator designed to minimize
distuption, binary genotype, and a new method for
interpreting fuzzy rules designed to preserve all fuzzy set
membership values. Consultation with our collaborating
company, Lloyds/TSB resulted m a set of evaluation
criteria for the system: intelligibility, speed, handling
noise and accuracy.

With these aspects in mind, three sets of experiments
were performed on the system, using two standard data
sets to permit comparison with the literature. The first
test investigated the effect of membership functions on
the system. By increasing the overlap between fuzzy
membership functions and by preserving the information
held in the membership values, the results showed that
the number of rules needed to classify data could be
reduced. This reduction often led to a decrease in
accuracy of classification, but this was offset by the
dramatically increased intelligibility of output, faster
processing time, and better feature selection. The second

test investigated the effects of using different clusterers
in the system. It was found that a basic clusterer
slightly reduced the accuracy of the system, compared to
the more complex K-Means approach. The choice of
clusterer did not seem to have any consistent effect on
intelligibility of output or processing speed. The final test
mvestigated the ability of the system to cope with
increasing levels of noise in the data. As one would
expect, accuracy of classification was detrimentally
affected as noise increased. Interestingly, the
intelligibility and processing speed showed no clear trend
for increasing levels of noise.
Together, these experiments show:

many factors affect accuracy of classification

intelligibility and processing speed only seem to
be affected by the type and use of membership functions
- noise and the choice of clusterer seems unimportant.

noisy data causes at best a linear drop in
accuracy, and at worst, a fall proportionate to the square
of mput noise.

As the second stage, this research has described the use
of genetic programming to evolve fuzzy rules within a
parallel committee decision system. Attention was paid
to data preprocessing, describing some of the typical
problems associated with real-world data in order to
show just how hard this kind of classification becomes.
Nevertheless, despite having only 49 suspicious items in
the first class to train the system, and an unknown
number of suspicious items in the 10000-item second
class, performance of the system was good. Given the
quality and quantity of the data, accuracy rates of over
60% must surely be regarded as impressive. Indeed it
seems very likely that better accuracy would only result
in overfitting the meagre training data. In addition,
intelligibility rates were excellent with many rule sets
comprising a single, understandable rule.

This work shows the benefit of committee decision
making. Each of the four different committee members
(different setups of the evolutionary fuzzy system)
provided different rates of accuracy and intelligibility.
The committee decision maker was able to analyse all
results and pick the best rule set.

The evolved rules and the table of field frequencies in
rules have provided important and interesting
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information about the nature of fraud in home insurance
claims. Sadly the names of the fields and the true
meanings of the rules cannot be reported in this article,
but Lloyds TSB have stated that the results were sensible
as confirmed by previous analysis, and support the
potential for even more useful results with improved
data.

Finally, a comrmittee-decision-making evolutionary fuzzy
system developed in this work was applied for domestic
credit card transaction data evaluation. The results for
this real-world problem confirm previous results
obtained for real home insurance data. They illustrate
that the use of evolution with fuzzy logic can enable both
accurate and intelligible classification of difficult data.
The results also show the importance of committee-
decision making to help ensure that good results will
always be generated.
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