• 제목/요약/키워드: Creatine

검색결과 501건 처리시간 0.028초

Effects of cardiac biological activities on low-intensity physical training in doxorubicin-induced cardiotoxicity rat models

  • Ki, Yeong-Kye;Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Rehabilitation Science
    • /
    • 제3권2호
    • /
    • pp.107-111
    • /
    • 2014
  • Objective: In the present study, we investigated the protective effects of low-intensity treadmill training in doxorubicin-induced cardiotoxicity rat models. Design: Randomized controlled trial. Methods: In this study, we randomly divided them into four groups. The normal group included non-cardiotoxicity normal control (n=10), the control group included non-treadmill training after doxorubicin-induced cardiotoxicity (n=10), the experimental group I included low-intensity treadmill training (3 m/min) after doxorubicin-induced cardiotoxicity (n=10), and the experimental group II included low-intensity treadmill training (8 m/min) after doxorubicin-induced cardiotoxicity (n=10). Rats in the treadmill training group underwent treadmill training, which began at 2 weeks after first intraperitoneal injection. We determined the body weight change for each rat on days 1 and 21. Biochemical markers (lactate dehydrogenase [LDH], creatine kinase [CK], glutathion, aspartate transaminase [AST], and alanine transaminase [ALT]) concentration in the serum change of rats from all four groups was examined at the end of the experiment. Results: The results showed that the experimental group I and II showed a significant increase in body weight as compared with that of the control group (p<0.05). We observed that the biochemical markers (LDH, CK, glutathion, AST, and ALT) were improved in the experimental group I than the experimental group II (p<0.05). There was no difference between the experimental groups. Conclusions: In conclusion, our data suggest that low-intensity treadmill training applied after doxorubicin treatment protects against cardiotoxicity following treatment, possibly by enhancing antioxidant defenses and inhibiting cardiac muscle cell apoptosis.

Characterization of gender-specific bovine serum

  • Kim, Ji-Hoe;Kim, Min-Soo;Nahm, Sang-Soep;Lee, Dong-Mok;Pokharel, Smritee;Choi, In-Ho
    • Animal cells and systems
    • /
    • 제15권2호
    • /
    • pp.147-154
    • /
    • 2011
  • Animal cell cultures generally require a nutrient-rich medium supplemented with animal serum. Adult bovine serum contains a variety of nutrients including inorganic minerals, vitamins, salts, proteins and lipids as well as growth factors that promote animal cell growth. To evaluate the potential use of gender-specific bovine serum (GSBS) for cell culture, the biochemical properties of male serum (MS), female serum (FS) and castrated-male serum (CMS) were investigated. Overall, the chemical profile of GSBS was similar to that of bovine references except for glucose, creatine kinase, lactate dehydrogenase and potassium. FS showed elevated total protein and sodium concentrations compared to MS and CMS. Proteins present in MS, FS and CMS but absent in fetal bovine serum (FBS) were selected by two-dimensional gel electrophoresis and identified by peptide mass fingerprinting. Some of the identified proteins are known to be involved in immune responses and the others have unknown physiological roles. Moreover, it was found that some proteins such as alpha-2-macroglobulin appeared to be gender-specific with higher contents in FS. Insulin and testosterone was significantly higher in MS, and $17{\beta}$-estradiol and estrone were higher in FS, as compared to the other sera. Taken together, the results indicate that each GSBS has a different ratio of components. Differences in serum constituents may affect cell cultures in a different manner and could be beneficial, depending on the specific aim of cell cultures.

고강도 운동부하에 의한 흰쥐의 심장근육 손상에 대한 Salvianolic Acid B의 효능에 대한 연구 (Effect of Salvianolic Acid B on Cardiac Muscle Damage Following Exhaustive Exercise in Rats)

  • 임웅진;이종수
    • 한방비만학회지
    • /
    • 제17권2호
    • /
    • pp.77-86
    • /
    • 2017
  • Objectives: This study examined the effects of salvianolic acid B (SAB) on exhaustive exercise-induced cardiac muscle damage to rats. Methods: The study was carried out with 12-week-old young adult male Sprague-Dawley rats. Thirty-six rats were divided into 3 groups; normal (n=12), exhaustive exercise group (ExS, n=12) and exhaustive exercise with SAB (ExS+SAB, n=12). Five days before exhaustive exercise, SAB were medicated for 5 days in ExS+SAB group. Rats in ExS and ExS+SAB group were forced to swim for 150 minutes and then they were sacrificed, while rats in normal group were sacrificed at rest. After that, blood was collected and cardiac muscle tissue damage indices were analyzed. Results: Serum aspartate transaminase activity and lactate dehydrogenase activity were significantly lower in ExS+SAB group than in ExS group. Serum creatine phosphokinase activity of ExS+SAB was significantly lower than ExS group. However, the content of serum creatinine had no difference between ExS and ExS+SAB group. In the H&E stained left ventricle myocardium, ExS group showed signs of myocardial damage such as sporadic fragmentation of myocardial fibers, interstitial edema, cytoplasmic eosinophilia and neutrophils infiltration. However, ExS+SAB group alleviated the severity of the signs of myocardial damage. In the myocardial dihydroethidium staining, optical density was remarkably decreased in ExS+SAB group compared to ExS group. Furthermore, the up-regulation of Bax/Bcl-2 ratio was observed in ExS+SAB group compared with ExS group. Conclusions: The above results suggest that SAB may protect cardiac muscle damage via antioxidant activity and prevention of apoptosis.

능아소적탕(稜莪消積湯)의 항혈전(抗血栓) 및 항염작용(抗炎作用)에 대한 실험적(實驗的) 연구(硏究) (The Experimental Study on Anti-thrombotic and Anti-inflammatory Effect of NeungaSoJeokTang(NSJT))

  • 제종민;유동열
    • 대한한방부인과학회지
    • /
    • 제20권3호
    • /
    • pp.45-64
    • /
    • 2007
  • Purpose: This study was performed to evaluate anti-thrombotic and anti-inflammatory effects of NeungaSoJeokTang water extract (NSJT). Methods: In the study of anti-inflammatory effects, NSJT was investigated using cultured cells and murine models. As for the parameters of inflammation, levels of several inflammatory cytokines and chemical mediators which are known to be related to inflammation were determined in mouse lung fibroblast cells(mLFC) and RAW 264.7 cells. Results: Prior to the experiment, we evaluated sGOT, sGPT, BUN and creatine after the treatment. As a result, NSJT was innoxious on liver and kidney. In experiment of anti-thrombotic effect, NSJT inhibited the platelet aggregation induced by ADP and epinephrine, and inhibited pulmonary embolism induced by collagen and epinephrine. NSJT did not affect significantly the blood flow rate both in vitro and in vivo. NSJT increased platelet number and fibrinogen amount, and NSJT shortened PT and APTT in thrombus model induced by dextran. In experiment of anti-inflammatory effect, NSJT inhibited $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, COX-2 and NOS-II mRNA expression in a concentration-dependent manner in RAW 264.7 cell line, and inhibited significantly NO production at 50, 100 ${\mu}g/ml$, and also inhibited ROS production in a concentration-dependent manner. NSJT inhibited $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ production significantly in serum of acute inflammation-induced Balb/c mice, and decreased $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ production in spleen tissue, but increased $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ production in liver tissue. NSJT increased survival rate at the 3th day in ICR mice with lethal endotoxemia induced by LPS. Conclusion: These results suggest that NSJT can be used for treating diverse female diseases caused by thrombosis and inflammation such as pelvic pain, pelvic inflammatory disease as well as vulvar pain due to vulvitis, vulvar vestibulitis and so on.

  • PDF

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

  • Wang, Haixia;Shi, Xin;Cheng, Longlong;Han, Jie;Mu, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.239-249
    • /
    • 2021
  • The present study explored the therapeutic potential of hydrogen sulfide (H2S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of H2S, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine (H2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering H2S. The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.

BAG3 mutation in a patient with atypical phenotypes of myofibrillar myopathy and Charcot-Marie-Tooth disease

  • Kim, Seung Ju;Nam, Soo Hyun;Kanwal, Sumaira;Nam, Da Eun;Yoo, Da Hye;Chae, Jong?Hee;Suh, Yeon?Lim;Chung, Ki Wha;Choi, Byung?Ok
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1269-1277
    • /
    • 2018
  • Bcl2-associated athanogene 3 (BAG3) mutations have been reported to cause the myofibrillar myopathy (MFM) which shows progressive limb muscle weakness, respiratory failure, and cardiomyopathy. Myopathy patients with BAG3 mutation are very rare. We described a patient showing atypical phenotypes. We aimed to find the genetic cause of Korean patients with sensory motor polyneuropathy, myopathy and rigid spine. We performed whole exome sequencing (WES) with 423 patients with sensory motor polyneuropathy. We found BAG3 mutation in one patient with neuropathy, myopathy and rigid spine syndrome, and performed electrophysiological study, whole body MRI and muscle biopsy on the patient. A de novo heterozygous p.Pro209Leu (c.626C>T) mutation in BAG3 was identified in a female myopathy. She first noticed a gait disturbance and spinal rigidity at the age of 11, and serum creatine kinase levels were elevated ninefolds than normal. She showed an axonal sensory-motor polyneuropathy like Charcot-Marie-Tooth disease (CMT), myopathy, rigid spine and respiratory dysfunction; however, she did not show any cardiomyopathy, which is a common symptom in BAG3 mutation. Lower limb MRI and whole spine MRI showed bilateral symmetric fatty atrophy of muscles at the lower limb and paraspinal muscles. When we track traceable MRI 1 year later, the muscle damage progressed slowly. As far as our knowledge, this is the first Korean patient with BAG3 mutation. We described a BAG3 mutation patient with atypical phenotype of CMT and myopathy, and those are expected to broaden the clinical spectrum of the disease and help to diagnose it.

Neurocognitive Functions in Infants with Malnutrition; Relation with Long-chain Polyunsaturated Fatty Acids, Micronutrients Levels and Magnetic Resonance Spectroscopy

  • Cakir, Murat;Senyuva, Sukran;Kul, Sibel;Sag, Elif;Cansu, Ali;Yucesan, Fulya Balaban;Yaman, Serap Ozer;Orem, Asim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제22권2호
    • /
    • pp.171-180
    • /
    • 2019
  • Purpose: Malnutrition may influence neurocognitive development in children by directly affecting the brain structural development, or indirectly by affecting the children's cognition experience. Malnutrition alters the cell numbers, cell migration, synaptogenesis, and neurotransmission due to inadequate availability of necessary micronutrients to support cell growth. We aimed to analyze neurocognitive development in infants with malnutrition and its association with long chain polyunsaturated fatty acids (LC-PUFA), micronutrients levels and magnetic resonance spectroscopy (MRS) findings. Methods: The study included two groups; group 1, infants with malnutrition (n=24), group 2; healthy infants (n=21). Peripheral blood was obtained from the participants for studying micronutrients and LC-PUFA levels. The neurocognitive development was analyzed by the use of an Ankara Developmental Screening Inventory test. MRS were performed on all infants. Results: All parameters of neurocognitive development and serum calcium ($9.6{\pm}0.9mg/dL$ vs. $10.4{\pm}0.3mg/dL$, p<0.05) and magnesium ($2.02{\pm}0.27mg/dL$ vs. $2.2{\pm}0.14mg/dL$, p<0.05) levels were noted as being low in infants with marked malnutrition. No difference was found in LC-PUFA levels between healthy and malnourished infants. Thalamic choline/creatine levels were significantly high in infants with malnutrition ($1.33{\pm}0.22$ vs. $1.18{\pm}0.22$, p<0.05). Total neurocognitive development in infants was positively correlated with serum calcium levels (p<0.05, r=0.381). Conclusion: Calcium supplementation may improve neurocognitive development in malnourished infants.

Influence of co-culturing muscle satellite cells with preadipocytes on the differentiation of adipocytes and muscle cells isolated from Korean native cattle

  • Choi, Chang Weon
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.715-723
    • /
    • 2018
  • The present study was done to investigate the effect of co-culturing muscle satellite cells (MSCs) and intramuscular preadipocytes (IPs) on the differentiation of adipocytes and muscle cells isolated from Korean native cattle. MSCs and IPs were single-cultured in 10% fetal bovine serum/Dulbecco's modified Eagles medium (FBS/DMEM) for 48 h followed by culturing in 5% FBS/DMEM as the growth media. Then, the growth media was replaced by differentiation media composed of 2% FBS/DMEM without any additives for the single- or co-culture of muscle cells and intramuscular adipocytes to induce the differentiation of both cell types. Cell differentiation was measured by morphological investigation and cytosolic enzyme analysis of glycerol-3-phosphate dehydrogenase (GPDH) for the adipocytes and creatine kinase (CK) for the muscle cells. In the morphological test, the presence of muscle cells did not stimulate adipocyte differentiation showing more differentiation of the adipocytes in the single-culture compared to the co-culture condition. However, the differentiation of muscle cells was promoted by adipocytes in the co-culture. The results of the enzymatic analysis were highly associated with the morphological results with a statistically higher GPDH activity (p < 0.05) appearing in the single-culture than in the co-culture, whereas the opposite was true for the CK activity of the muscle cells (p < 0.05). By manipulating in vivo the milieu using a co-culture, we could detect the difference in the rate of cell differentiation and suggest that a co-culture system is a more reliable and precise technique compared to a single-culture. Further studies on various co-culture trials including supplementation of differentiating substances, gene expression analysis, etc. should be done to obtain practical and fundamental data.

Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction

  • Eltobshy, Somaia A.G.;Hussein, Abdelaziz M.;Elmileegy, Asaad A.;Askar, Mona H.;Khater, Yomna;Metias, Emile F.;Helal, Ghada M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권3호
    • /
    • pp.203-217
    • /
    • 2019
  • The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).

원심성 운동 후 극저온 냉각치료 적용이 운동유발성 근육 손상 후 통증, CK 및 LDH에 미치는 효과 (The effect of Whole-body cryotherapy intervention after an eccentric exercise on PPT, CK and LDH of EIMD)

  • 신성필;김하늘;전재근
    • 대한물리치료과학회지
    • /
    • 제28권3호
    • /
    • pp.30-41
    • /
    • 2021
  • Background: The purpose of this study was to investigate the effects of WBC on the pressure pain threshold, CK and LDH after exercise-induced muscle injury. Design: A Randomized Controlled Trial. Methods: In this study, these subjects were assigned into three groups, a control group (n=10), experiment group I (n=10) and experiment group II (n=10). The subjects in experimental group I were intervened by WBC (-130℃, 3 minutes) before induced EIMD, experimental group II were intervened by WBC (-130℃, 3 minutes) after induced EIMD and control group weren't by any intervened after induced EIMD. Results: First, In the comparison of the PPT, there were significant variations with the lapse the time in three groups (p<.001) and there was a significant interaction of time and group (p<.001). In the among group comparison, the PPT of experimental group II was significantly larger than those of other groups (p<.01). Second, In the comparison of the CK, there were significant variations with the lapse the time in three groups (p<.001) and there was a significant interaction of time and group (p<.001). In the among group comparison, the CK of experimental group II was significantly smaller than those of other groups (p<.001). Third, In the comparison of the LDH, there were significant variations with the lapse the time in three groups (p<.01) and there was a significant interaction of time and group (p<.001). In the among group comparison, the LDH of experimental group II was significantly smaller than those of other groups (p<.001). Conclusion: The above results revealed that the WBC intervention after an exercise had a positive effect of muscle function after EIMD.