• 제목/요약/키워드: Crawler-type

검색결과 36건 처리시간 0.021초

Effect of labor saving by crawler-type truck in steep slope orchards

  • Tsurusaki, T.;Yamashita, J.;Imoto, T.;Satou, K.;Hikita, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1580-1584
    • /
    • 1991
  • The purpose of the present study is to investigate, from the viewpoint of labor science, the effect of labor saving by crawler-type truck, which has been used for the rationalization of transportation labor in the citrus orchard on steep slops, and to find out how effectively to utilize the crawler-type truck. In order to attain the purpose mentioned above, portable heart rate memory for measuring physical response of laborer was taken, and the experiment was carried out in the citrus orchard on steep slopes in Japan.

  • PDF

반궤도식 산림작업차 개발(I) - 설계 및 제작 - (Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture -)

  • 김재환;박상준
    • 한국산림과학회지
    • /
    • 제100권2호
    • /
    • pp.154-164
    • /
    • 2011
  • 본 연구는 우리나라 험준한 급경사 지형의 단목중심의 목재생산시스템 등에 적합하고 사방사업, 임도사업 등의 다양한 산림작업에 유용하게 활용할 수 있는 다목적의 반궤도식 산림작업차 개발을 목적으로 실시하였다. 산림작업차량의 기본 차체는 최소회전반경 설계기준과 작업도 폭을 고려하여 차체프레임부의 총길이는 5,750 mm, 차체의 폭은 1,900 mm, 적재부의 적재용량은 약 $2.5m^{3}$으로 설계 제작하였다. 동력원은 3,400 rpm의 최대 96마력 출력의 엔진을 선정하였으며, 유압펌프는 2개의 주펌프와 2개의 보조펌프로 나누어 선정하고, 주펌프는 전후좌우 4개의 주행용 유압모터에 사용하고, 보조펌프는 각종 작업기에 사용하도록 설계 제작하였다. 동력전달방식은 HST(Hydro-Static Transmission) 시스템을 적용하였고, 주행부는 조향가능한 전방 고무바퀴와 무한 궤도형으로 회전하는 후방 크롤러로 설계 제작하고, 조향방식은 애커만 조향방식을 채택하였다. 주행조작부는 일반 자동차의 운전 및 운전석 형태로 설계 제작하였으며, 보조장치로 윈치와 로그그래플 및 아웃트리거를 장착하였다. 시작기의 공차시 임도의 주행속도는 저속 5.3 km/hr, 고속 7.7 km/hr로 나타났다.

Development of a Crawler Type Vehicle to Travel in Water Paddy Rice Field for Water-Dropwort Harvest

  • Jun, Hyeon-Jong;Kang, Tae-Gyoung;Choi, Yong;Choi, Il-Su;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • 제38권4호
    • /
    • pp.240-247
    • /
    • 2013
  • Purpose: This study was conducted to develop a rubber-crawler type vehicle as a traveling device for harvesting water-dropwort cultivated in water contained paddy rice field in winter season. Methods: A commercial rubber-crawler type vehicle was used to investigate application of rubber crawler to the paddy rice field as preliminary test. As the result of the preliminary test, a both prototype traveling device with rubber crawlers for a water-dropwort harvest was designed with inclination of $45^{\circ}$ at the front-end and rear-end of crawler under the basic water depth of 0.6 m in the paddy rice field. The device was fabricated and attached to the experimental harvesting test devices on the front of the prototype vehicle. The size of the prototype crawler vehicle with a harvesting part is $2,800{\times}1,460{\times}1,040 $ (mm) ($L{\times}W{\times}H$) with weight of 9.21 kN (maximum). Sizes of the crawler of prototype vehicle are ground contact length of 900 mm, width of 180 mm, height of 1,070 mm and distance between center to center of crawlers of 720 mm. The side-overturn angle of the prototype was $26.4^{\circ}$. Results: Driving performance of the prototype vehicle in water contained paddy field were good at both forward and reverse (backward) directions as weights were applied. The drawbar pull and the maximum sinking depth of the prototype vehicle were 3.5 kN and 0.13 m respectively at water depth of 0.5 m, when the weight and bearing capacity of the prototype rubber crawler in the paddy field were 8.51 kN and 26.3 $kN/m^2$, respectively. Conclusions: Results of the driving test performance of the prototype crawler in paddy rice field at the water depth of 0.5 m were satisfactory. The prototype had enough drawbar pull and driving ability in the deep water contained paddy field.

크롤러형 굴삭기의 동역학적 모델 개발 및 시뮬레이션 (Dynamic Model Development and Simulation of Crawler Type Excavator)

  • 권순기
    • 한국생산제조학회지
    • /
    • 제18권6호
    • /
    • pp.642-651
    • /
    • 2009
  • The history of excavator design is not long enough which still causes most of the design considerations to be focused on static analysis or simple functional improvement based on static analysis. However, the real forces experiencing on each component of excavator are highly transient and impulsive. Therefore, the prediction and the evaluation of the movement of the excavator by dynamic load in the early design stage through the dynamic transient analysis of the excavator and ensuring of design technique plays an importance role to reduce development-cost, shorten product-deliver, decrease vehicle-weight and optimize the system design. In this paper, Commercial software DADS and ANSYS help to develop the track model of the crawler type excavator, and to evaluate the performance and the dynamic characteristics of excavator with various simulations. For that reason, the track of crawler type excavator is modelled with DADS Track Vehicle Superelement, and the reaction forces on the track rollers were predicted through the driving simulation. Also, the upper frame and cabin vibration characteristics, at the low RPM idle state, were evaluated with engine rigid body modelling. And flexibility body effects were considered to determine the more accurate joint reaction forces and accelerations under the upper frame swing motion.

  • PDF

크롤러 방식 터널로봇의 모션제어 알고리즘 (Motion Control Algorithm for Crawler Type In-Pipe Robot)

  • 배기만;이상룡;이상일;이춘영
    • 대한임베디드공학회논문지
    • /
    • 제3권2호
    • /
    • pp.66-73
    • /
    • 2008
  • The pipes have been laid underground while the industry is developing. We have to take maintenance procedure when the pipes are cracked or ruptured. It is very difficult jop to check pipe's crack because the pipes are narrow and laid underground. Using in-pipe robot, we can check the conditions of inner section of pipes, therefore, we designed a crawler type robot to search cracked pipe. In this paper, we have made a special focus on the control of the robot using differential drive algorithm to move in curved section of pipes. The detailed design of the robot with experimental result show the effectiveness of the robot in pipe maintenance.

  • PDF

탄성 다물체 해석기법을 이용한 크롤러형 건설장비의 주행 및 선회 동특성 해석 (Driving and Swing Analysis of a Crawler Type Construction Equipment Using Flexible Multibody Dynamics)

  • 김형근;서민석
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.101-109
    • /
    • 1997
  • A tool for the dynamic simulation and design technique of the excavator plays an important role in the prediction of dynamic behavior of the excavator in the initial design stage. In this paper, a flexible multibody dynamic analysis model including track of the crawler type excavator is developed using DADS and ANSYS. Through the driving simulation of the excavator travelling over rough road track, frequency characteristics of the upper frame and cabin are obtained, and the reaction forces acting on the track rollers are also presented for the fatigue life estimation. The effect of boom vibration modes on the joint reaction forces and accelerations is presented from the swing simulation.

  • PDF

동역학분석 프로그램을 이용한 반궤도식 임내작업차의 주행안정성 분석 (Running stability analysis of the Semi-Crawler Type Mini-Forwarder by Using a Dynamic Analysis Program)

  • 김재환;박상준
    • 한국산림과학회지
    • /
    • 제104권1호
    • /
    • pp.98-103
    • /
    • 2015
  • 반궤도식 임내작업차의 주행안정성 분석을 위하여 동역학분석 프로그램인 RecurDyn을 이용하여 횡전도 분석, 등판능력 분석, 장애물 통과 시뮬레이션을 수행하였다. 동역학분석 프로그램을 해석하는데 필요한 반궤도식 임내 작업차의 형상은 3D CAD모델러인 AutoCAD 3D를 이용하여 모델링하였다. 반궤도식 임내작업차의 공차 및 적재 시에서 횡단기울기 $20^{\circ}$ 이하의 지형에서 주행하는 것이 안전하다는 것을 알 수 있었으며, 종단기울기 시뮬레이션에서는 공차 및 적재 시에 종단경사 $28^{\circ}$ 미만의 지역에서 주행하는 것이 안정적인 것으로 판단되었다. 장애물 통과 시의 주행안정성은 공차 및 적재의 경우, 전륜타이어가 주행속도 각각 5 km/hr 및 4 km/hr 이상일 때 지면과 분리되는 것으로 예측되었으며, 후륜궤도는 지면과의 분리현상이 나타나지 않았으므로 장애물 통과 시에는 최대 5 km/hr 이하가 안전하다는 것을 알 수 있었다.

관절형 크로라 이동 로봇을 이용한 휠체어의 자동 계단 승월 시스템 (Automatic Stair Climbing System of Wheelchair Using Articulated Crawler Type Mobile Robot)

  • 신재호;한영환
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 1996
  • In this paper, describe the automatic climbing wheelchair system use an articulated crawler mobile robot. This wheelchair system(call system) is composed of sensor detecting part and wireless communication part with PC. The sensor parts are consisted of sloping sensor and ultrasonic sensor part. The sloping sensor measures the sloping angle of system, and the ultrasonic sensor measures the distance of system's front wheel center from stair. PC will generate the operation data to climb up the stair using the measured data and make primitives for the system. At firsts This system transfer from sensor data to the PC. PC calculate the operation data to climb up the stair from the internal algorithm. We simulated the system in various stair angle slope($25^{\circ}$, $30^{\circ}$, $45^{\circ}$), and tested it on the real staircase with width 37cm, highlt 18cm, Angle $26^{\circ}$ . There were $0.350^{\circ}$ - $1.060^{\circ}$ Angle errors while climbing because adapted sensor has a precision $0.35^{\circ}$ in resolution. Finally, We implemented the sensor detecting part and the wireless communication park and practiced our system in 4cm/sec speed.

  • PDF

크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정 (Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom)

  • 장효필;한동섭
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.