• Title/Summary/Keyword: Crank-Nicolson scheme

Search Result 41, Processing Time 0.023 seconds

An unstructured finite volume method for unsteady incompressible flows with full second order accuracy (2차 정확도를 가지는 비정상 비압축성 유동장 해석을 위한 비정렬 유한 체적법의 개발)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.71-76
    • /
    • 2004
  • An extension of our recently developed locally linear reconstruction scheme to 2 dimensional incompressible flow solver is presented. The solver is based on a semi-implicit fractional step method in which the convective term is discretized by Adams-Bashforth method and the diffusion term by Crank-Nicolson method. Several numerical examples are tested to demonstrate the mesh type independent accuracy of the solver, which include decaying vortex flow, square cavity flow, and flow around a circular cylinder. The above examples are solved on quadrilateral or hybrid meshes. For all numerical examples, we obtained reasonable results.

  • PDF

Analysis of Characteristics of Cohesive Sediment Settling (점착성 퇴적물의 침전 특성 분석)

  • Kim, Jong-Woo;Yoon, Sei-Eui;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.133-142
    • /
    • 2005
  • The settling concentration of fine suspended solid particles(alumina(Al$_2$O$_3$) and quartz(SiO$_2$)) is investigated with the physico-chemical effects(initial concentration, pH and NaCl). Laboratory tests have confirmed the significant influence of increasing initial concentration and salinity which can lead to flocculation due to the intermolecular attraction. Furthermore, the influence of the pH value on the concentration-time corves of alumina has been on firmed. Besides a numerical model to predict the behaviour of cohesive deposit under still water is analyzed by solving the unsteady one-dimensional diffusion-advection equation with a explicit, implicit, Crank-Nicolson and finite difference scheme. The model predicts the existence of an equilibrium concentration. Application of the model with implicit centered difference to data from settling experiments shows a similar distribution.

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

A study on temporal accuracy of OpenFOAM

  • Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Cranke-Nicolson scheme in native OpenFOAM source libraries was not able to provide 2nd order temporal accuracy of velocity and pressure since the volume flux of convective nonlinear terms was 1st accurate in time. In the present study the simplest way of getting the volume flux with 2nd order accuracy was proposed by using old fluxes. A possible numerical instability originated from an explicit estimation of volume fluxes could be handled by introducing a weighting factor which was determined by observing the ratio of the finally corrected volume flux to the intermediate volume flux at the previous step. The new calculation of volume fluxes was able to provide temporally accurate velocity and pressure with 2nd order. The improvement of temporal accuracy was validated by performing numerical simulations of 2D Taylor-Green vortex of which an exact solution was known and 2D vortex shedding from a circular cylinder.

FEM APPROACH TO ONE DIMENSIONAL UNSTEADY STATE TEMPERATURE DISTRIBUTION IN HUMAN DERMAL PARTS WITH QUADRATIC SHAPE FUNCTIONS

  • Gurung, D. B.;Saxena, V. P.;Adhikary, P. R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.301-313
    • /
    • 2009
  • This paper presents a Finite Element Method (FEM) application to thermal study of natural three layers of human dermal parts of varying properties. This paper carries out investigation of temperature distributions in these layers namely epidermis, dermis and under lying tissue layer. It is assumed that the outer skin is exposed to atmosphere and the loss of heat due to convection, radiation and evaporation of water have also been taken into account. The computations are carried out for one dimensional unsteady state case and the shape functions in dermal parts have been considered to be quadratic. A Finite Element scheme that uses the Crank-Nicolson method is used to solve the problem and the results computed have been exhibited graphically.

  • PDF

Fully-Implicit Decoupling Method for Incompressible Navier-Stokes Equations (비압축성 나비어-스톡스 방정식의 완전 내재적 분리 방법)

  • Kim, Kyoung-Youn;Baek, Seung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1317-1325
    • /
    • 2000
  • A new efficient numerical method for computing three-dimensional, unsteady, incompressible flows is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used for both the diffusion and convection terms, is adopted. Based on an approximate block LU decomposition method, the velocity -pressure decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully -implicit time advancement scheme. Since the iterative procedures for the momentum equations are not required, the velocity components decouplings bring forth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to minimal channel flow unit with DNS (Direct Numerical Simulation).

A Study of Wide-Angle Parabolic Mild Slope Equation (광각 포물형 완경사 방정식에 관한 연구)

  • 박정철;김재중;김기철;이정만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.201-209
    • /
    • 1998
  • The propagation of water waves over irregular bottom bathymetry and around islands involves many process. In this study of numerical model is developed current in water of varying depth. The method used is splitting method and minimax approximation. This numerical method used is Crank-Nicolson scheme. This model is applied to Vincent shoal and compared with laboratory data. The results agreed well with laboratory data. The results agreed well with laboratory data. Current effect is considered in this study. So, the model is used for the estimation of rip current in the slowly varying topography.

  • PDF

Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis (유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석)

  • Jo, Jin-Rae;Ju, Yeong-Sin;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE ROSENAU-BURGERS EQUATION

  • Xu, Ge-Xing;Li, Chun-Hua;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Numerical solutions of the Rosenau-Burgers equation based on the cubic B-spline finite element method are introduced. The backward Euler method is used for discretization in time, and the obtained nonlinear algebraic system is changed to a linear system by the Newton's method. We show that those methods are unconditionally stable. Two test problems are studied to demonstrate the accuracy of the proposed method. The computational results indicate that numerical solutions are in good agreement with exact solutions.

An implicit decoupling method for unsteady RANS computation (비정상 RAMS 계산을 위한 내재적 분리 방법)

  • Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.704-708
    • /
    • 2000
  • A new efficient numerical method for computing unsteady, incompressible flows, DRANS (Decoupled Reynolds-Averaged Navier-Stokes), is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used fer both the diffusion and convection terms. is adopted. Based on decomposition method, the velocity-turbulent quantity decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully-implicit time advancement scheme. Since the iterative procedures for the momentum, ${\kappa}\;and\;{\varepsilon}$ equations are not required, the components decouplings bring fourth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to turbulent boundary layer with local forcing.

  • PDF