• Title/Summary/Keyword: Crane Ship

Search Result 122, Processing Time 0.037 seconds

Cooperative control system of the floating cranes for the dual lifting

  • Nam, Mihee;Kim, Jinbeom;Lee, Jaechang;Kim, Daekyung;Lee, Donghyuk;Lee, Jangmyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.95-102
    • /
    • 2018
  • This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes are well-coordinated to add up the lift capabilities of both cranes without any loss such that virtually a single crane is lifting, maneuvering and unloading. Two main constraints for the dual lifting are as follows: First, two barges of floating cranes should be constrained as a rigid body not to cause a relative motion between two barges and main hooks of the two cranes should be controlled as main hooks of a single crane. In order words, it is necessary to develop the cooperative control of two floating cranes in order to sustain a center of gravity of the module and minimize the tilting angle during the lifting and unloading by the two floating cranes. Two floating cranes are handled as a master-slave system. The master crane is able to gather information about all working conditions and make a decision to control the individual hook speed, which communicates the slave crane by TCP/IP. The developed control system has been embedded in the real floating crane systems and the dual lifting has been demonstrated five times at SHI shipyard in 2015. The moving angles of the lifting module are analyzed and verified to be suitable for hoisting control. It is verified that the dual lifting can be applied for many heavier and wider blocks and modules to shorten the construction time of ships and off-shore platforms.

Development of Structural Analysis System for a Ship Block under Lifting and Turnover Operation (선박 블록의 반전 및 이동시 변형예측을 위한 구조해석 시스템의 개발)

  • Han, Jeong-Sam;Lee, Won-Jae;Choo, Yeon-Seok;You, Young-Kyoon;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.219-223
    • /
    • 2001
  • This paper introduces DS/Block-Structure - a structural analysis module of DS/Block, which is a Design System to simulate the behavior of a ship block in various crane operations and to evaluate its structural deformation using the finite element method. It runs based on a CAD program, Pro/ENGINEER, and structural analyses are performed by a developed FE code. Boundary conditions for the FE analysis of a ship block under lifting and turnover operation are also considered.

  • PDF

Axiomatic design study for automatic ship-to-ship mooring system for container operations in open sea

  • Kim, Yong Yook;Choi, Kook-Jin;Chung, Hyun;Lee, Phill-Seung
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.157-169
    • /
    • 2011
  • To provide more rational design solutions at conceptual design level, axiomatic design method has been applied to solve critical part of a new engineering problem called Mobile Harbor. In the implementation, the Mobile Harbor, a functional harbor system that consists of a vessel with container crane approaches to a container ship anchored in the open sea and establishes a secure mooring between the two vessels to carry out loading and unloading of containers. For this moving harbor system to be able to operate successfully, a reliable and safe strategy to moor and maintain constant distance between the two vessels in winds and waves is required. The design process of automatic ship-to-ship mooring system to satisfy the requirements of establishing and maintaining secure mooring has been managed using axiomatic design principles. Properly defining and disseminating Functional Requirements, clarifying interface requirements between its subsystems, and identifying potential conflict, i.e. functional coupling, at the earliest stage of design as much as possible are all part of what need to be managed in a system design project. In this paper, we discuss the automatic docking system design project under the umbrella of KAIST mobile harbor project to illustrate how the Axiomatic Design process can facilitate design projects for a large and complex engineering system. The solidified design is presented as a result.

Optimal Berth and Crane Scheduling Using Constraint Satisfaction Search and Heuristic Repair (제약만족 탐색과 휴리스틱 교정기법을 이용한 최적 선석 및 크레인 일정계획)

  • 류광렬;김갑환;백영수;황준하;박영만
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.2
    • /
    • pp.1-14
    • /
    • 2000
  • The berth and crane scheduling problem in a container terminal encompasses the whole process of assigning berth to each ship, determining the duration of berthing, assigning container cranes to each ship, and determining the specific start and end time of each crane service, for all the ships scheduled to be arriving at the terminal during a certain scheduling horizon. This problem is basically a constraint satisfaction problem in which cranes and berths should be assigned in such a way that all the spatial and temporal constraints are satisfied without any interference. However, it is also an optimization problem because the requested arrival and departure time should be met for as many of the scheduled ships as possible, while the operation cost of the terminal should be minimized. In this paper, we present an effective and efficient approach to solving this type of problem, which combines constrain satisfaction search and heuristic repair. We first employ a constraint satisfaction search to find a feasib1e solution. Then, the feasible solution is modified to a more optimal one by iteratively applying our heuristic repair operations within the framework of constraint satisfaction search. Experimental results with a real data from Pusan East Container Terminal showed that our approach can derive a schedule of satisfactory quality in a very short time.

  • PDF

A Study on RFID Based Biz-Model for QoS Guarantee for Container Terminals (RFID를 활용한 컨테이너터미널의 QoS 보장을 위한 비즈니스 모델 연구)

  • Park Doo-Jin;Park Jin-Hee;Kim Hyun;Nam Ki-Chan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.211-217
    • /
    • 2006
  • In recent years, the pileup of world ports is deepening as time goes by due to China effect and continuous increase of world trade volume. The shipping companies try to reduce their shipping cost by using mega vessels in the ports. Shipping companies consider most of the ships turnaround time as a critical factor when selecting a calling port for reducing cost. This paper will suggest how we can guarantee terminal QoS like ship waiting time ratio and ship residing time applying RFID(Radio Frequence IDentification) technology, raising up rapidly as a fundamental solution of new growing industry to port information system. Also, lead time of whole port logistics can be decreased for reduction of loading & discharging time and result from productivity improvement of Twin-lift G/C(Gantry Crane} as applying RFID technology to terminal operation. The purpose of this paper suggests that the new business model of U-Port which port QoS can be guaranteed using RFID based RTLS technology.

An Iterative Improvement Search for the Optimal Berth and Crane Scheduling (반복적 개선 탐색을 이용한 최적 선석 및 크레인 일정계획)

  • Hwang Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.117-125
    • /
    • 2004
  • The berth and crane scheduling problem in a container terminal encompasses the whole process of assigning berth to each ship. determining the duration of berthing, assigning container cranes to each ship, and determining the specific start and end time of each crane service, for all the ships scheduled to be arriving at the terminal during a certain scheduling horizon. This problem is basically a constraint satisfaction problem in which all the constraints should be satisfied. However, it is also an optimization problem because the requested arrival and departure time should be met for as many of the scheduled ships as possible. while the operation cost of the terminal should be minimized. In this paper. I present an effective approach to solving this problem, which combines both constraint satisfaction search and iterative improvement search. I test this method on a real world container terminal problem and the results show that the method can produce better results than any other existing method.

  • PDF

A Study on RFID Based QoS Guarantee between O/D Container terminals for Biz-Model (RFID을 활용한 기종점 컨테이너 터미널간 QoS 보장을 위한 비즈니스 모델 연구)

  • Park Doo-Jin;Kim Hyun;Nam Ki-Chan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.303-309
    • /
    • 2005
  • This paper will suggest how can we guarantee terminal QoS like ship waiting time ratio and ship residing time applying RFID(Radio Frequence Identification) technology, raising up rapidly as a fundamental solution of new growing industry, to port information system. Also, lead time of whole port logistics can be decreased for reduction of loading & discharging time resulted from productivity improvement of Twinlift G/C(Gantry Crane) and Y/T(Yard Tract) etc as applying RFID technology to terminal operation. The purpose of this paper is suggesting of new business model of u-Port that port QoS can be guaranteed from mutual agreement of each terminals RFID technology applied and focusing on the implementation plan.

  • PDF

Structural Optimization of the Mobile Harbor Carne Considering Sea State (해상 상태를 고려한 모바일하버용 크레인의 구조최적설계)

  • Lee, Jae-Jun;Lim, Won-Jong;Jeong, Seong-Beom;Jung, Ui-Jin;Park, Gyung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • The mobile harbor is a new concept system to solve the problems of a port. These problems are that container ships cannot be anchored at the dock because they have become larger or the waiting times of anchoring the ships are increased due to heavy container traffic. A new system is designed to carry out the loading and unloading of containers between the mobile harbor and the container ship using the mobile harbor crane at sea. The crane plays an important role when transferring the containers. In this research, various types of the mobile harbor crane are proposed and structural optimization for each type of the crane is carried out. The loading conditions consider the rolling and pitching conditions of the unstable sea state and the wind force are considered. The constraints are mainly the regulations made by the Korean Register of Shipping. The structure of the crane is optimized to minimize the mass while various constraints are satisfied.

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.