• Title/Summary/Keyword: Cradle to Gate

Search Result 7, Processing Time 0.025 seconds

Cradle to Gate Emissions Modeling for Scheduling of Construction Projects

  • Sharma, Achintyamugdha;Deka, Priyanka;Jois, Goutam;Jois, Umesh;Tang, Pei
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.975-983
    • /
    • 2022
  • This paper presents an innovative way of integrating scheduling and project controls with the environmental impact of a construction project to track, monitor, and manage environmental emissions at the activity level. As a starting point, scheduling and project controls help monitor the status of a project to provide an assessment of the duration and sequence of activities. Additionally, project schedules can also reflect resource allocation and costs associated with various phases of a construction project. Owners, contractors and construction managers closely monitor tasks or activities on the critical path(s) and/or longest path(s) calculated through network based scheduling techniques. However, existing industry practices do not take into account environmental impact associated with each activity during the life cycle of a project. Although the environmental impact of a project may be tracked in various ways, that tracking is not tied to the project schedule and, as such, generally is not updated when schedules are revised. In this research, a Cradle to Gate approach is used to estimate environmental emissions associated with each activity of a sample project schedule. The research group has also investigated the potential determination of scenarios of lowest environmental emissions, just as project managers currently determine scenarios with lowest cost or time. This methodology can be scaled up for future work to develop a library of unit emissions associated with commonly used construction materials and equipment. This will be helpful for project owners, contractors, and construction managers to monitor, manage, and reduce the carbon footprint associated with various projects.

  • PDF

Application of Life Cycle Assessment for Cleaner Production of Paper Products (종이제품의 청정생산을 위한 LCA기법의 적용)

  • Hwang, Yong-Woo;Jo, Byoung-Muk;Kim, Hyoung-Jin;Park, Kwang-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2002.11a
    • /
    • pp.228-233
    • /
    • 2002
  • In this study, Life Cycle Assessment method has been carried out the Corrugated board box in considering environmental aspects by quantifying the environmental emission and assessing its environmental impact potential. The system boundary in this study is selected from cradle to gate stage(raw material acquisition, raw material production and product manufacturing) of the paper product. To evaluate the environmental impact potential, impact categories are divided into 8 categories. As a results, abiotic resource depletion of the impact categories has the largest contribution to the total impact potential as 31.02% of total, Next were continued ecotoxicity having a contribution of 27.17%. In the life cycle, environmental impacts from law material production stage were contributed largely as 80.78%.

  • PDF

Life Cycle Assessment of the Domestic Dairy Cow System (국내 낙농우(젖소)로부터의 우유생산에 대한 전과정평가)

  • Park, Yoo Sung;Lee, Kun Mo;Yang, Seung Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.52-59
    • /
    • 2015
  • Recently the dairy cow industry have faced environmental issues such as eutrophication, global warming, etc. An LCA was used to quantify the environmental impact of a dairy cow system and to identify key issues contributing to the impact. The system boundary crop cultivation for feeding dairy cow, feed production, rearing and manure management (cradle-to-gate). The functional unit was 1 kg of milk (fat protein corrected milk, FPCM) produced. Rearing and cultivation of feed crops stages in system boundary to the environmental impact of the domestic dairy cow system were dominant issues. Techniques such as suppression of enteric fermentation, improvement of the energy efficiency of farm equipment and apparatuses, management of leachate generated during the crop cultivation, and development of controling the loss of fertilizer during crop production would be necessary for the improvement of the environmental key issues of the dairy cow system.

Environmental Impact Evaluation of Virgin Pulp Using Life Cycle Assessment Methodology (LCA기법을 이용한 천연펄프의 환경 영향 평가)

  • 김형진;조병묵;황용우;박광호
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Life Cycle Assessment for the pulp, which is mainly used as the raw material of fine paper, base paper for food packaging and paper cup, has been carried out in this study to consider environmental aspects by quantifying the environmental emission and to evaluate its environmental impact potential. The system boundary was selected from cradle to gate stage(raw material acquisition, transportation of raw material and product manufacturing) of the product. Environmental impact was divided into 8 categories considering Korean situation: abiotic resource depletion, global warming, ozone depletion, acidification, eutrophication, photochemical oxidant creation, ecotoxicity and human toxicity. In Life Cycle Impact Assessment(LCIA) methodology phase, Ecopoint, Eco-indicator 95 and Korean eco-indicator were used and the results carried out by each methodology were compared. The results from this study were also compared with those of foreign study to verify the reliability of the results. The results of the study could be utilized as the basic data for Environmental Management System(EMS), Design for Environment(DfE) and Type III eco-labeling in the paper and paper-related industry.

Analysis of Greenhouse Gas Emission associated with Clean Energy Agriculture System Development (청정에너지농업시스템 개발에 따른 실증단지의 온실가스배출량 분석)

  • Kim, Tae-Hoon;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.643-658
    • /
    • 2015
  • This study presents detailed emission of greenhouse gases of using Clean Energy Agriculture System according to a cradle-to-gate life-cycle assessment, including emission from energy use and leak of Biogas. Calculations were done with the PASS software and the covered gases are $CH_4$, $N_2O$ and $CO_2$, Total GHG fluxes of amount to $1719.03kgCO_2/day$, $39.63kgCO_2/day$ (2.31%) are from facility house process, $0.19kgCO_2/day$ (0.01%) are from transport process, $696.72kgCO_2/day$ (40.53%) are from Anaerobic digestion process, $846.61kgCO_2/day$ (49.25%) are from Heating and cooling system, $135.88kgCO_2/day$ (7.90%) are from Fertigation production process. The results suggest that for effective reduction of GHG emissions from Facility house using clean energy. Reduction targets should address both the production process as defined by IPCC sectors and the consumption process. An LCA assessment as presented here could be a basis for such efforts.

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.