• Title/Summary/Keyword: Cracking pressure

Search Result 278, Processing Time 0.038 seconds

Development of New Code Case "Mitigation of PWSCC and CISCC in ASME Code Section III Components by the Advanced Surface Stress Improvement Technology (일차수응력부식균열(PWSCC) 및 염화이온부식균열(CISCC) 저감용 표면개질기술 적용을 위한 코드케이스 개발)

  • Cho, Sungwoo;Pyun, Youngsik;Mohr, Nick;Tatman, Jon;Broussard, John;Collin, Jean;Yi, Wongeun;Oh, Eunjong;Jang, Donghyun;Koo, Gyeong Hoi;Hwang, Seong Sik;Choi, Sun Woong;Hong, Hyun UK
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.28-32
    • /
    • 2019
  • In nuclear power plant operation and spent fuel canisters, it is necessary to provide a sound technical basis for the safety and security of long-term operation and storage respectively. Recently, the peening technology is being discussed and the technology will be adopted to ASME Section III, Division 1, Subsection NX (2019 Edition). The peening is prohibited in current edition, but it will be approved in 2019 Edition and adopted. However, Surface stress improvement techniques such as the peening is used to mitigate SCC susceptible in operating nuclear plants. Although the peening will be approved to ASME CODE, there are no performance criteria listed in the 2019 edition. The Korean International Working Group (KIWG) formed a new Task Group named "Advanced Surface Stress Improved Technology". The task group will develop a CODE CASE to address PWSCC(Primary Water Stress Corrosion Cracking) and CISCC(Chloride Induced Stress Corrosion Cracking) for new ASME Section III components. TG-ASSIT was started to make peening performance criteria for ASME Section III (new fabrication) applications. The objective of TG-ASSIT is to gain consensus among the relevant Code groups that requirements/mitigation have been met.

Numerical simulation of infill CACB wall cracking subjected to wind loads

  • Ruige Li;Yu Gao;Hongjian Lin;Mingfeng Huang;Chenghui Wang;Zhongzhi Hu;Lingyi Jin
    • Structural Engineering and Mechanics
    • /
    • v.89 no.5
    • /
    • pp.479-489
    • /
    • 2024
  • The cracking mechanism in ceramsite aerated concrete block (CACB) infill walls were studied in low seismic fortification intensity coastal areas with frequent occurrence of typhoons. The inter-story drifts of an eight-story residential building under wind loads and a seismic fortification intensity of six degrees were analyzed by using the PKPM software. The maximum inter-story drift ratio of the structure in wind load was found to be comparable to that under the seismic fortification intensity of six degrees. However, when accounting for the large gust wind speed of typhoon, the maximum inter-story drift ratio was much larger than that obtained under reference wind load. In addition, the finite element models of RC frames were employed by displacement loading to simulate two scenarios with and without window hole in the CACB infill walls, respectively. The simulation results show no signs of cracking in both the infill walls with window hole and those without window for the inter-story drift caused by seismic loads and the reference wind load. However, both types of infill walls experienced structural creaking when assessing the gust wind pressure recorded from previous typhoon monitoring. It is concluded that an underestimate of wind loads may contribute substantially to the cracking of frame CACB infill walls in low seismic fortification intensity coastal areas. Consequently, it is imperative to adopt wind pressure values derived from gust wind speeds in the design of CACB infill walls within frame structures. Finally, the future research directions of avoiding cracks in CACB filled walls were proposed. They were the material performance improving and building structure optimizing.

The comparison between experimental and FEA results for crack initiation due to corrosion of reinforcement (콘크리트 구조물의 철근부식으로 인한 균열발생에 관한 실험적, 해석적 결과의 비교)

  • 장상엽;김용철;조용범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.693-698
    • /
    • 2003
  • Corrosion of reinforcement and deterioration of concrete short the lifetime of reinforced concrete structure and affect the safety of the structure. In particular, the corrosion of reinforcement causing the inner pressure of the interface between the concrete and reinforcement is known to significantly contribute to the premature deterioration of concrete structure. Several attempts have been made to predict the cracking time of the concrete structure. However, problems such as the lack of reproducibility of concrete tests and non-uniformity of materials have hampered thess kinds of studies. Thus, the mechanism of the concrete cracking due to reinforcement corrosion is in the way. This studymeasured the mechanical properties of corrosion products using the nano-indentation test method. Likewise, the critical thickness of corrosion products for the cracking of concrete cover was investigated using the finite element and experimental methods.

  • PDF

Effect of ZnO Nanoparticle Presence on SCC Mitigation in Alloy 600 in a Simulated Pressurized Water Reactors Environment

  • Sung-Min Kim;Woon Young Lee;Sekown Oh;Sang-Yul Lee
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.401-411
    • /
    • 2023
  • This study investigates the synthesis, characterization, and application of zinc oxide (ZnO) nanoparticles for corrosion resistance and stress corrosion cracking (SCC) mitigation in high-temperature and high-pressure environments. The ZnO nanoparticles are synthesized using plasma discharge in water, resulting in rod-shaped particles with a hexagonal crystal structure. The ZnO nanoparticles are applied to Alloy 600 tubes in simulated nuclear power plant atmospheres to evaluate their effectiveness. X-ray diffraction and X-ray photoelectron spectroscopy analysis reveals the formation of thermodynamically stable ZnCr2O4and ZnFe2O4 spinel phases with a depth of approximately 35 nm on the surface after 240 hours of treatment. Stress corrosion cracking (SCC) mitigation experiments reveal that ZnO treatment enhances thermal and mechanical stability. The ZnO-treated specimens exhibit increased maximum temperature tolerance up to 310 ℃ and higher-pressure resistance up to 60 bar compared to non-treated ZnO samples. Measurements of crack length indicate reduced crack propagation in ZnO-treated specimens. The formation of thermodynamically stable Zn spinel structures on the surface of Alloy 600 and the subsequent improvements in surface properties contribute to the enhanced durability and performance of the material in challenging high-temperature and high-pressure environments. These findings have significant implications for the development of corrosion-resistant materials and the mitigation of stress corrosion cracking in various industries.

An analysis of cavity pressure for various injection molding conditions (성형조건에 따른 캐비티의 내압분포 분석)

  • Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, D.W.;Kim, K.Y.;Lyu, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.293-296
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software, Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System (공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교)

  • Kim, Do Tae;Jang, Zhong Jie
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

A Numerical Study on the Flow Characteristics through an Industrial Safety Relief Valve (산업용 안전 릴리프밸브 유동특성에 관한 수치연구)

  • Kang, Sang-Mo;Lee, Bong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.696-704
    • /
    • 2009
  • In this paper, the flow characteristics through an industrial safety relief valve used to protect the crankcase room in a large-sized marine engine have been numerically investigated using the moving-mesh strategy. With the room pressure higher than the cracking one, the spring-loaded disc becomes open and then the air in the room blows off into the atmosphere, resulting in the reduction of the room pressure and then the shutoff of the disc. Numerical simulations are performed on the compressible air flow through the relief valve (${\phi}160mm$) with the initial room pressure (0.11 bar or 0.12bar) higher than the cracking one (0.1 bar). The numerical method has been validated by comparing the results with the empirical ones. Results show that the disc motion and flow characteristics can be successfully simulated using the moving-mesh strategy and depend strongly on the spring stiffness and the flow passage shape. With increasing spring stiffness, the maximum disc displacement decreases and thus the total disc-opening time also decreases. In addition, the flow passage shape makes a significant effect on the velocity and direction of the flow.

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces (최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가)

  • 유승룡;김대훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

  • Alvarez Holston, Anna-Maria;Stjarnsater, Johan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.663-667
    • /
    • 2017
  • Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below $300^{\circ}C$. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor ($K_{IH}$) to initiate DHC as a function of temperature in Zry-4 for temperatures between $227^{\circ}C$ and $315^{\circ}C$. The experimental technique used in this study was the pin-loading testing technique. To determine the $K_{IH}$, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around $300^{\circ}C$, there was a sharp increase in $K_{IH}$ indicating the upper temperature limit for DHC. The value for $K_{IH}$ at $227^{\circ}C$ was determined to be $2.6{\pm}0.3MPa$ ${\surd}$m.