• Title/Summary/Keyword: Crack width

Search Result 644, Processing Time 0.03 seconds

Flexural analysis of transverse joints of prefabricated T-girder bridge superstructure

  • Kye, Seungkyung;Jung, Hyung-Jo;Park, Sun-Kyu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Rapid construction of prefabricated bridges requires minimizing the field work of precast members and ensuring structural stability and constructability. In this study, we conducted experimental and analytical investigations of transverse joints of prefabricated T-girder bridge superstructures to verify the flexural performance and serviceability. In addition, we conducted parametric studies to identify the joint parameters. The results showed that both the segmented and continuous specimens satisfied the ultimate flexural strength criterion, and the segmented specimen exhibited unified behavior, with the flexural strength corresponding to that of the continuous specimen. The segmented specimens exhibited elastic behavior under service load conditions, and the maximum crack width satisfied the acceptance criteria. The reliability of the finite element model of the joint was verified, and parametric analysis of the convexity of the joint section and the compressive strength of the filler concrete showed that the minimum deflection and crack width occurred at a specific angle. As the strength of the filler concrete increased, the deflection and crack width decreased. However, we confirmed that the reduction in the crack width was hardly observed above a specific strength. Therefore, a design suitable for prefabricated bridges and accelerated construction can be achieved by improving the joint specifications based on the required criteria.

Analysis of Crack Width and Deflection Based on Nonlinear Bond Characteristics in Reinforced Concrete Flexural Members (비선형 부착 특성에 기반한 철근콘크리트 휨부재의 균열폭과 처짐 해석)

  • Lee, Gi-Yeol;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.459-467
    • /
    • 2008
  • This paper describes a proposal for average crack width and immediate deflection calculation in structural concrete members. The model is mathematically derived from actual bond stressslip relationships and tension stiffening effect between reinforcement and the surrounding concrete, and the actual strains of steel and concrete are integrated respectively along the embedded length between the adjacent cracks so as to obtain the difference in the axial elongation. With these, a model for average crack width and immediate deflection in reinforced concrete flexural members are proposed utilizing difference in the axial elongation and average steel strain and moment-curvature relationship with taking account of bond characteristics. The model is applied to the test specimens available in literatures, and the crack width and deflections predicted by the proposal equation in this study are closed to the experimentally measured data compared the current code provisions.

Evaluation of Crack Monitoring Field Application of Self-healing Concrete Water Tank Using Image Processing Techniques (이미지 처리 기법을 이용한 자기치유 콘크리트 수조의 균열 모니터링 현장적용 평가)

  • Sang-Hyuk, Oh;Dae-Joong, Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.593-599
    • /
    • 2022
  • In this study, a crack monitoring system capable of detecting cracks based on image processing techniques was developed to effectively check cracks, which are the main damage of concrete structures, and a program capable of imaging and analyzing cracks was developed using machine vision. This system provides objective and quantitative data by replacing the appearance inspection that checks cracks with the naked eye. The verification of the development system was applied to the construction site of a self-healing concrete water tank to monitor the crack and the amount of change in the crack width according to age. In the case of crack width detected by image analysis, the difference from the measured value using a digital microscope was up to 0.036 mm, and the crack healing effect of self-healing concrete could be confirmed through the reduction of crack width.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF

Combined Mode I / III Stress Intensity Factor Analysis of a Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드 I / III 균열의 응력확대 계수해석 - 3차원 유한요소해석 중심으로 -)

  • 양원호;최용식;조명래
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.112-120
    • /
    • 1993
  • Variable thickness plates are commonly encountered in the majority of mechanical/structural components of industrial applications. And, as a result of the unsymmetry of the structure or the load and the anisoptropy of the materials, the cracks in engineering structures are generally subjected to combined stresses. In spite of considerable practical interest, however, a few fracture mechanics study on combined mode crack in a variable thickness plate have carried out. In this respect, combined mode 1/3 stress intensity factors $K_{1}$ and $K_{3}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a central slant crack were chosen. the parameters used in this study were dimensionless crack length .lambda. crack slant angle .alpha, thickness ratio .betha. and width ratio .omega. Stress intensity factors were calculated by crack opening displacement(COD) and crack tearing displacement(CTD) method proposed by Ingraffea and Manu. The effect of thickness ratio .betha. on $K_{1}$ is relatively great in comparison to $K_{3}$.

  • PDF

The Crack Control of Fiber Net Reinforced RC Slab (섬유망을 이용한 RC슬래브의 균열제어)

  • Bae, Ju-Seong;Kim, Kyoung-Soo;Kim, Nam-Wook;Kim, Chul-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.225-231
    • /
    • 2002
  • Severe cracks on Reinforced Concrete (RC) structures caused by structural displacement can be often one of the main reasons for the degradation of tensile and flexural rigidities of RC structures and for the deterioration of durability and serviceability of RC structures through accelerated steel corrosion. These combined factors adversely affect the performance of RC concrete, leading to shortened life time of RC structures. In consideration of these problems, we conducted 3 point bending experiments by employing three different types of concrete specimens: fiber-net reinforced concrete (FNRC), polypropylene-fiber reinforced concrete (PFRC), and plain concrete (PC). FNRC is well known for its strong corrosion resistance, light self-weight, and excellent tensile strength, while PFRC is known to be effective in crack control. FNRC was found to have the best first and final crack resistances followed by PFRC and PC, as evidenced by the highest initial crack load and the smallest final crack width, respectively. The FNRC specimens with various tensile strength of fiber net exhibited greater ultimate strengths than those for PFRC and PC. Furthermore, the crack widths of FNRC specimens were smaller than those calculated by the crack-width estimation equation of the KCI and ACI code. Therefore, we conclude that fiber net reinforcement is effective not only on crack control, but also on loading share.

Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete

  • Gali, Sahith;Subramaniam, Kolluru V.L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.365-375
    • /
    • 2017
  • An experimental evaluation of crack propagation and post-cracking behavior in steel fiber reinforced concrete (SFRC) beams, using full-field displacements obtained from the digital image correlation technique is presented. Surface displacements and strains during the fracture test of notched SFRC beams with volume fractions ($V_f$) of steel fibers equal to 0.5 and 0.75% are analyzed. An analysis procedure for determining the crack opening width over the depth of the beam during crack propagation in the flexure test is presented. The crack opening width is established as a function of the crack tip opening displacement and the residual flexural strength of SFRC beams. The softening in the post-peak load response is associated with the rapid surface crack propagation for small increases in crack tip opening displacement. The load recovery in the flexural response of SFRC is associated with a hinge-type behavior in the beam. For the stress gradient produced by flexure, the hinge is established before load recovery is initiated. The resistance provided by the fibers to the opening of the hinge produces the load recovery in the flexural response.

Morphological segmentation based on edge detection-II for automatic concrete crack measurement

  • Su, Tung-Ching;Yang, Ming-Der
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.727-739
    • /
    • 2018
  • Crack is the most common typical feature of concrete deterioration, so routine monitoring and health assessment become essential for identifying failures and to set up an appropriate rehabilitation strategy in order to extend the service life of concrete structures. At present, image segmentation algorithms have been applied to crack analysis based on inspection images of concrete structures. The results of crack segmentation offering crack information, including length, width, and area is helpful to assist inspectors in surface inspection of concrete structures. This study proposed an algorithm of image segmentation enhancement, named morphological segmentation based on edge detection-II (MSED-II), to concrete crack segmentation. Several concrete pavement and building surfaces were imaged as the study materials. In addition, morphological operations followed by cross-curvature evaluation (CCE), an image segmentation technique of linear patterns, were also tested to evaluate their performance in concrete crack segmentation. The result indicates that MSED-II compared to CCE can lead to better quality of concrete crack segmentation. The least area, length, and width measurement errors of the concrete cracks are 5.68%, 0.23%, and 0.00%, respectively, that proves MSED-II effective for automatic measurement of concrete cracks.

Crack Width Control on Concrete Slab using Half-Depth Precast Panels with Loop Joints (루프이음 반두께 프리캐스트 바닥판을 갖는 콘크리트 바닥판의 균열폭 제어)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.19-29
    • /
    • 2015
  • As the half-depth precast concrete decks are increasingly applied to the construction sites, researches on connection details have been increased. For design of concrete bridge deck with half-depth precast panels, it is required to provide appropriate details of transverse loop joints between panels. In this paper, the structural performance of precast decks was evaluated to investigate continuity of the proposed loop joint details. From the results, the validity of the joints for the continuity of deck was observed in the aspect of flexural strength and crack control. The ultimate strength increased 1.52 times as the reinforcement spacing in the joint was reduced. In terms of crack control, direct crack width calculation for the loop joint showed appropriate results comparing with measured crack width.