• Title/Summary/Keyword: Crack tip stress

Search Result 497, Processing Time 0.027 seconds

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.

Influence of Anisotropic Property Ratio of Orthotropic Material on Stress Components and Displacement Components at Crack tip Propagating with Constant Velocity Under Dynamic Mode I (동적모드 I 상태에서 직교 이방성체의 이방성비가 등속전파 균열선단의 응력성분과 변위성분에 미치는 영향)

  • 이광호;황재석;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 1995
  • When the crack in orthotropic material is propagating under dynamic model I load, influences of anisotropic property ratio $E_{L}$/ $E_{T}$ on stress and displacement around propagating crack tip are studied in this paper. When M<0.55 and .alpha.=90.deg.(.alpha.; the angle of fiber direction with crack propagating direction, M; crack propagation velocity/shear stress wave velocity), the influence of $E_{L}$/ $E_{T}$ on stress .sigma.$_{x}$, .sigma.$_{y}$, .tau.$_{xy}$ and .sigma.$_{\theta}$ is the greast on .sigma.$_{y}$. Except M<0.55 and .alpha.=90.deg., it is the greast on .sigma.$_{x}$ in any situation. Increasing $E_{L}$/ $E_{T}$, stress components are increased or decreased. When maximum stress is based, the stress .sigma.$_{x}$(.alpha.=90.deg.), .sigma.$_{y}$(.alpha.=0.deg.) and .tau.$_{xy}$ (.alpha.=90.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0. any stresses except .sigma.$_{*}$x/(.alpha.=0.deg.) are decreased with increment of $E_{L}$/ $E_{T}$ in M=0.9. When .alpha.=90.deg., the influence of $E_{L}$/ $E_{T}$ on displacement U and V is V>U in any velocities of crack propagation, when .alpha.=0.deg., it is VU in M>0.75 and when $E_{L}$/ $E_{T}$ is increased, U and V are decreased in any conditions.sed in any conditions.tions.tions.tions.

Development of finite 'crack' element (균열 유한 요소의 개발)

  • 조영삼;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.381-388
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor K/sub I/ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

Suppression of interfacial crack for foam core sandwich panel with crack arrester

  • Hirose, Y.;Hojo, M.;Fujiyoshi, A.;Matsubara, G.
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.11-30
    • /
    • 2007
  • Since delamination often propagates at the interfacial layer between a surface skin and a foam core, a crack arrester is proposed for the suppression of the delamination. The arrester has a semi-cylindrical shape and is arranged in the foam core and is attached to the surface skin. Here, energy release rates and complex stress intensity factors are calculated using finite element analysis. Effects of the arrester size and its elastic moduli on the crack suppressing capability are investigated. Considerable reductions of the energy release rates at the crack tip are achieved as the crack tip approached the leading edge of the crack arrester. Thus, this new concept of a crack arrester may become a promising device to suppress crack initiation and propagation of the foam core sandwich panels.

Prediction of the Critical Stress for the Inclined Crack in Orthotropic Materials under Biaxial load (2축하중을 받는 직교이방성 경사균열에서 임계응력의 예측)

  • Lim, Won-Kyun;Cho, Hyung-Suk;Jeong, Woo-Kil;Lee, Ill-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1384-1391
    • /
    • 2006
  • The problem of an infinite anisotropic material with a crack inclined with respect to the principal material axes is analyzed. The material is subjected to uniform biaxial load along its boundary. It is assumed that the material is homogeneous, but anisotropic. By considering the effect of the horizontal load, the distribution of stresses at the crack tip is analyzed. The problem of predicting critical stress in anisotropic solids which is a subject of considerable practical importance is examined and the effect of load biaxiality is made explicitly. The present results based on the normal stress ratio theory show significant effects of biaxial load, crack inclination angle and fiber orientation on the critical stress. The analysis is performed for a wide range of the crack angles and biaxial loads.

Local stress field for torsion of a penny-shaped crack in a transversely isotropic functionally graded strip

  • Feng, W.J.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.759-768
    • /
    • 2004
  • The torsion of a penny-shaped crack in a transversely isotropic strip is investigated in this paper. The shear moduli are functionally graded in such a way that the mathematics is tractable. Hankel transform is used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by taking the asymptotic behavior of Bessel function into account. The effects of material property parameters and geometry criterion on the stress intensity factor are investigated. Numerical results show that increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface can suppress crack initiation and growth, and that the stress intensity factor varies little with the increasing of the strip's height.

Fracture mechanics analysis of a crack in a weld of dissimilar steels using the J-ingegral (J-적분을 이용한 이종강재 용접접합부 균열의 파괴역학적 해석)

  • 이진형;장경호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.264-266
    • /
    • 2004
  • for the kぉ mechanics analysis of a crack in a weld of dissimilar steels, residual stress analysis and fracture analysis must be performed simultaneously. The standard definition of the J-integral leads to a path dependent value in the presence of a residual stress field. And unlike cracks in homogeneous materials, a bimaterial interface crack always induces both opening and shearing modes of stress in the vicinity of the crack tip. Therefore, it is necessary to develope a path independent J-integral definition for a crack in a residual stress field generated by welding of dissimilar steels. This paper addresses the modification of the Rice-J-integral to produce a path independent J-integral when residual stresses due to welding of dissimilar steels and external forces are present. The residual stress problem is heated as an initial stain problem and the J-integral proposed for this class of problems is used And a program which can evaluate the 1-integral for a crack in a weld of dissimialr steels is developed using proposed J-integral definition.

  • PDF

A Study on the Influence of Residual Stresses on Fatigue Fracture of Aluminum Alloy Weldments (알루미늄 합금 용접재의 피로파괴에 미치는 잔유응력의 영향에 관한 연구)

  • 차용훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.25-32
    • /
    • 1995
  • This study is to inspect the influence of the initial residual stress on fatigue crack growth behavior after the distribution of the initial residual stress is measured when the crack is growing from the compressive residual stress field. Also, the tensile residual stress field. Also, the influence of the variation of residual stress distribution on fatigue crack growth behavior at the crack tip is studied when the initial crack occurs on weld metal, bead interface and HAZ (Heat Affected Zone), respectively. For this purpose, CT-type specimen that crack parallel to the welding bead were manufactured by butt welding on the Al. Alloy 1100-O plate.

  • PDF

Analyses of Fracture Parameters and Prediction of Crack Propagation Path on Delamination in the LSI Package (반도체 패키지의 층간박리 파괴역학인자 해석 및 균열진전경로 예측)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.401-409
    • /
    • 2009
  • This paper presents a method of calculating the stress intensity factor (K) and crack propagation direction (${\theta}_0$) at the crack-tip that is associated with delamination in the large scale integration(LSI) package. To establish a reasonable strength evaluation method and life prediction, it is necessary to assess fracture parameters under various fracture conditions. Therefore, we conducted quantitative stress singularity analysis considering thermal stress simulating the changes of crack length (a), (h) and (v) in delamination using the 2-dimensional elastic boundary element method (BEM), and from these results predicted crack propagation direction and path.

  • PDF

Analysis of a Conducting Crack in an Electrostrictive Ceramic Under Combined Electric and Mechanical Loading

  • Beom, Hyeon-Gyu;Jeong, Kyoung-Moon;Jeong, Eun-Do
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1117-1126
    • /
    • 2002
  • A conducting crack in an electrostrictive ceramic under combined electric and mechanical loading is investigated. Analysis based on linear dielectric model predicts that the surfaces of the crack are not open completely but they are contact near the crack tip. The complete solution for the crack with a contact zone in a linear electrostrictive ceramic under combined electric and mechanical loading is obtained by using the complex variable formula. The asymptotic problems for a semi-infinite crack with a partial opening zone as well as for a fully open semi-infinite crack in a nonlinear electrostrictive ceramic are analyzed in order to investigate the effect of the electrical nonlinearity on the stress intensity factor under small scale nonlinear conditions. Particular attention is devoted to a finite crack in the nonlinear electrostrictive ceramic subjected to combined electric and mechanical loading. The stress intensity factor for the finite crack under small scale nonlinear conditions is obtained from the asymptotic analysis.