• Title/Summary/Keyword: Crack strength

Search Result 2,424, Processing Time 0.028 seconds

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구)

  • 곽계환;박종건
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Mechanical Characteristics and Crack-Healing of ZIRCONIA(ZrO2) Composite Ceramics with SiC and TiO2 (SiC와 TiO2 첨가에 따르는 ZrO2의 기계적 특성 및 균열 치유)

  • Nam, Ki Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.267-273
    • /
    • 2016
  • This study evaluated the mechanical properties and crack-healing abilities of zirconia composite ceramics. The six kinds of specimens used were: partially stabilized zirconia (Z) and five zirconia composite (ZS, ZST1, ZST2, ZST3, and ZST5) with SiC and $TiO_2$. There was not a large difference between the Vickers hardness of the six types of zirconia ceramics. The bending strength of the ZS specimen degraded rapidly, but the zirconia specimens with $TiO_2$ (ZST1, ZST2, ZST3, and ZST5) showed improved strength. Therefore, it was determined that the bending strength is affected by the crystallization, which is due to the addition of SiC and $TiO_2$. From the crack-healing conditions having the highest bending strength, monolithic zirconia retained its cracks, while the specimens of four types with SiC healed their cracks.

Evaluation Method of Bonded Strength Considering Stress Singularity in Adhesively Bonded Joints (응력특이성을 고려한 접착이음의 강도평가 방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.58-68
    • /
    • 1998
  • Advantages of adhesively bonded joints and techniques of weight reduction have led to increasing use of structural adhesives such as LSI(large scale integration) package, automobile, aircraft in the various industries. In spite of such wide applications of adhesively bonded joints, the evaluation method of bonding strength has not been established. Stress singularity occurs at the interface edges of adhesively bonded joints and it is required to analyze it. In this paper, the stress singularity using 2-dimensional elastic boundary element method (BEM) with the changes of the lap length and adhesive for single lap joint was analyzed, and experiments of strength evaluation were carried out. As the results, the evaluating method of bonding strength considering stress singularity at interface edges of adhesively bonded joints and stress intensity factor of interface crack have been proposed in static and fatigue test.

  • PDF

Strength Characteristics of Ultra High Performance Concrete at early age

  • Kim, Sung-Wook;Park, Jung-Jun;Ryu, Guem-Sung;Koh, Kyoung-Taek;Hong, Ki-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.563-564
    • /
    • 2009
  • Ultra-High Performance Concrete (UHPC) compared to normal concrete is exhibiting extremely high strength characteristics with compressive strength and tensile strength reaching 200MPa and 15MPa, respectively. The mechanical characteristics of UHPC can be thus exploited advantageously in the construction of structure through the reduction of the cross-sectional area and fabrication of slim and light-weight of the structural members. In the case where the structural member is made of UHPC, the occurrence of crack can be prevented by releasing the restraint provided by the form in due time. This research performs parametric study of the failure characteristics of concrete such as failure energy and softening curve suggested by the viscous crack model approximating the failure of concrete. The scope of this research contains the results of tests performed to investigate the strength of UHPC during early elapsed time.

  • PDF

A Study on the Distribution of Internal Inclusions and the Fatigue Strength of Induction Surface Hardened Steel (고주파 표면경화재의 내부개재물의 분포와 피로강도에 관한 연구)

  • Song, Sam-Hong;Choi, Byoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.333-338
    • /
    • 2000
  • Induction surface hardening is widely used to enhance local strength and hardness. However, most research is only to have a focus on fatigue life and fatigue behavior is not so much studied. So, in this study, Cr-Mo steel alloy(SCM440) was used to show the effect of residual stress and micro hole on the fatigue strength for base metal and induction surface hardened specimen. In addition, the fatigue characteristic between surface hardened and fully hardened steel is somewhat different. It is caused by hardness distribution, residual stress and inclusions etc.. Crack origins are generally micro inclusions for the high strength steel. So, the distribution of inclusions is analyzed statistically.

  • PDF

Study on properties of geopolymer-polyurethane sponge composite

  • Chen, Zhilei;Lee, Sang-Jin
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.419-423
    • /
    • 2018
  • A newly conceived geopolymer composite was fabricated by a combination of the geopolymer and polyurethane sponge. The density and porosity of hardened geopolymer composite, corresponded to different pore sizes of polyurethane sponge, exhibited no significant differences from each other. However, the mechanical behavior, the compressive strength and flexural strength, showed slight differences accordingly. Fracture of the geopolymer composite exposed to high compressive load was not observed from all specimens containing polyurethane sponge. The toughness enhancement of the geopolymer composite, due to spontaneous elasticity of polyurethane sponge, crack spread, and crack diffraction, was identified through the stress-strain curve and microstructure of fracture surface. The newly designed geopolymer composite having a 3-dimensional sponge skeleton showed relatively higher flexural strength of 8.0 MPa than other conventional geopolymer composites.

R-Curve Behavior in a Gas-Pressure Sintered Silicon Nitride (가스압 소결된 질화규소의 R-Curve 거동)

  • 김상섭;김성진;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.949-955
    • /
    • 1992
  • R-curves, fracture resistance (KR) as a function of crack extension (Δa), of a gas-pressure sintered monolithic Si3N4 were determined by controlled flaw/strength technique. Rising R-curve behavior was observed, confirming the operation of microstructural toughening process during crack growth. The R-curve parameters, k and m in the equation, KR=k(Δa)m, were determined to 30.301 and 0.1146, respectively. Microstructural observation of growing crack revealed that the bridging in the crack wake by unbroken ligament of large elongated ${\beta}$-grains was the mechanism primarily for the rising R-curve behavior.

  • PDF

Behavior of durable SFRC Structures for the Protection of Underground Environment (토양과 지하수를 보호하기 위한 구조물에 있어서 강섬유콘크리트의 특성)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • In this paper, the crack properties of steel fiber reinforced concrete (SFRC) structures for environment by experimental and analytical methods are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete.

  • PDF

Modified Micro-Mechanical Fiber Bridging Model for Crack Plane of Fiber Rreinforced Cementitious Composite (섬유보강 복합체의 균열면 해석을 위한 수정 미세역학 모델)

  • Shin, Kyung-Joon;Park, Jong-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.365-368
    • /
    • 2006
  • In this paper, the post cracking stress-crack width relationship of the composite is studied from a micromechanics points of view. Cook-Gordon debonding effect is studied by more refined method with considering of chemical friction of fiber interface. As a result, fiber with pre-debonding length retards stress development and shows more wide crack width for the same force level. longer pre-debonding length and lower pre-debonding bond strength results in lower full-debonding force, but same crack width.

  • PDF

Effect of welding variables on the crack arrest toughness of thick steel plate (선급 극후물재의 취성균열 전파 정지 인성에 미치는 용접변수의 영향)

  • Ryu, Kang-Mook;An, Gyu-Baek;Kim, Tae-Su;Lee, Tae-Yeung;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.103-103
    • /
    • 2009
  • As the size of containership increased over 14,000TEU, thick steel plate with high strength has been used. The plate thickness increased over 70mm and yield strength of the steel plate was around $47kg_f/mm^2$. Many researchers reported that the thick welded plate has low crack arrest toughness. They noticed the crack arrest ability is dependent on the plate thickness. In other words, brittle crack propagates straightly along the welded line and make abrupt fracture in the thick plate which causes low $K_{ca}$. In this study, the other factors, especially welding heat input, to cause low crack arrest toughness was investigated for thick steel plate welds. EH grade steel plates were used in this study and 50 to 80 thick plates were tested to confirm thickness sensitivity. Electro gas welding (EGW) and flux cored arc welding (FCAW) were adopted to prepare the welded joints. Temperature gradient ESSO test was performed to measure $K_{ca}$ values with the variation of welding variables. As a result of this study, regardless of plate thickness, welding heat input to cause welding residual stress around crack path is a key factor to control the brittle crack propagation in welded joints.

  • PDF