• Title/Summary/Keyword: Crack sensor

Search Result 187, Processing Time 0.026 seconds

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Nondestructive Evaluation and Interfacial Damage Sensing of PVDF embedded Polymer Composites using Micromechanical Techniques and Acoustic Emission (Micromechanical 시험법과 AE를 이용한 PVDF 함침 고분자 복합재료의 계면손상감지능 및 비파괴적 평가 연구)

  • Kong, Jin-Woo;Park, Joung-Man;Kim, Ki-Bok;Yoon, Dong-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.216-219
    • /
    • 2002
  • Conventional piezoelectric lead-zirconate-titanate (PZT) senor has high sensitivity, but it is very brittle. Recently polymer films such as polyvinylidene fluoride (PVDF) have been used use as a sensor. The advantages of PVDF are the flexibility and mechanical toughness. Simple process and possible several shapes are also additional advantages. PVDF sensor can be directly embedded and attached to a structure. In this study, PVDF sensor was embedded in single glass fiber/epoxy composites whereas PZT sensor with AE was attached to single fiber composites (SFC). Piezoelectric sensor responds to interfacial damage of SFC. The signals measured by PVDF sensor were compared to PZT sensor. PZT sensor detected the signals of fiber fracture, matrix crack, interfacial debonding and even sensor delamination, whereas PVDF sensor only detected fiber fracture signals so far, because PZT sensor is much more sensitive than current PVDF sensor. Wave voltage of fiber fracture measured by PVDF sensor was lower than that of PZT sensor, but the results of fast Fourier transform (FFT) analysis were same. Wave velocity using two PZT sensors was also studied to know the internal and surface damage effect of epoxy specimens.

  • PDF

Damage Detection and Suppression in Composites Using Smart Technologies

  • Takeda, Nobuo
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.26-36
    • /
    • 2001
  • Smart sensors and actuators have recently been developed. In this study, first, small-diameter fiber Bragg grating (FBG) sensors developed by the author, whose cladding and polyimide coating diameters were 40 and $52{\mu}m$, respectively, were embedded inside a laminate without resin-rich regions around sensors and the deterioration of mechanical properties of the composite laminate. The small-diameter FBG sensor was embedded in $0^{\circ}$ ply of a CFRP laminate for the detection of transverse cracks in $90^{\circ}$ ply of the laminate. The reflection spectra from the FBG sensor were measured at various tensile stresses. The spectrum became broad and had some peaks with an increase of the transverse crack density. Furthermore, the theoretical calculation reproduced the change in the spectrum very well. These results show that the small-diameter FBG sensors have a potential to detect the occurrence of transverse cracks through the change in the form of the spectrum, and to evaluate the transverse crack density quantitatively by the spectrum width. On the other hand, shape memory alloy (SMA) films were used to suppress the initiation and growth of transverse cracks in CFRP laminates. Pre-strained SMA films were embedded between laminas in CFRP laminates and then heated to introduce the recovery stress in SMA films and compressive stresses in the weakest plies ($90^{\circ}$ ply). The effects of recovery stresses are demonstrated in the experiments and well predicted using the shear-lag analysis and the nonlinear constitutive equation of SMA films.

  • PDF

Silica aerogels for potential sensor material prepared by azeotropic mixture (공비혼합물로 제조된 다공성 센서재료용 실리카 에어로젤)

  • Shlyakhtina, A.V.;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.395-400
    • /
    • 2007
  • Ambient drying sol-gel processing was used for monolithic silica ambigels in the temperature range of $130-250^{\circ}C$. A new method of mesopore ambigels, which mean the aerogels prepared by ambient pressure drying process synthesis, is suggested at first. This method includes two important approaches. The first point is that $SiO_{2}$ surface modification of wet gel was performed by trimethylchlorosilane in n-butanol solution. This procedure is provided the silica gel mesopore structure formation. The second point is a creation of the ternary azeotropic mixture water/n-butanol/octane as porous liquid, which is effectively provided removing of water such a low temperature by 2 step drying condition under ambient pressure. The silica aerogels, which were prepared by ambient pressure drying from azeotropic mixture of water/n-butanol/octane, are transparent, crack-free and mesoporous (pore size ${\sim}$ 5.6 nm) with surface area of ${\sim}$ $923{\;}m^2/g$, bulk density of $0.4{\;}g/cm^3$ and porosity of 85 %.

Analysis on Damage of Porcelain Insulators Using AE Technique (AE기법을 이용한 자기애자의 손상 분석)

  • Choi, In-Hyuk;Shin, Koo-Yong;Lim, Yun-seog;Koo, Ja-Bin;Son, Ju-Am;Lim, Dae-Yeon;Oh, Tae-Keun;Yoon, Young-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.231-238
    • /
    • 2020
  • This paper investigates the soundness of porcelain insulators associated with the acoustic emission (AE) technique. The AE technique is a popular non-destructive method that measures and analyzes the burst energy that occurs mainly when a crack occurs in a high-frequency region. Typical AE methods require continuous monitoring with frequent sensor calibration. However, in this study, the AE technique excites a porcelain insulator using only an impact hammer, and it applies a high-pass filter to the signal frequency range measured only in the AE sensor by comparing the AE and the acceleration sensors. Next, the extracted time-domain signal is analyzed for the damage assessment. In normal signals, the duration is about 2ms, the area of the envelope is about 1,000, and the number of counts is about 20. In the damage signal, the duration exceeds 5ms, the area of the envelope is about 2,000, and the number of counts exceeds 40. In addition, various characteristics in the time and frequency domain for normal and damage cases are analyzed using the short-time Fourier transform (STFT). Based on the results of the STFT analysis, the maximum energy of a normal specimen is less than 0.02, while in the case of the damage specimen, it exceeds 0.02. The extracted high-frequency components can present dynamic behavior of crack regions and eigenmodes of the isolated insulator parts, but the presence, size, and distribution of cracks can be predicted indirectly. In this regard, the characteristics of the surface crack region were derived in this study.

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

NDT of a Nickel Coated Inconel Specimen Using by the Complex Induced Current - Magnetic Flux Leakage Method and Linearly Integrated Hall Sensor Array (복합 유도전류-누설자속법과 고밀도 홀센서배열에 의한 니켈 코팅 인코넬 시험편의 비파괴검사)

  • Jun, Jong-Woo;Lee, Jin-Yi;Park, Duk-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.375-382
    • /
    • 2007
  • Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported.

Study of Optical Fiber Sensor Systems for the Simultaneous Monitoring of Fracture and Strain in Composite Laminates (복합적층판의 변형파손 동시감지를 위한 광섬유 센서 시스템에 관한 연구)

  • 방형준;강현규;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • To perform the realtime strain and fracture monitoring of the smart composite structures, two optical fiber sensor systems are proposed. The two types of the coherent sources were used for fracture signal detection - EDFA with FBG and EDFA with Fabry-Perot filter. These sources were coupled to EFPI sensors imbedded in composite specimens. To understand the characteristics of matrix crack signals, at first, we performed tensile tests using surface attached PZT sensors by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as short time Fourier transform (STFT) and wavelet transform (WT) for the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes. And, from the test of tensile load monitoring using optical fiber sensor systems, measured strain agreed with the value of electric strain gage and the fracture detection system could detect the moment of damage with high sensitivity to recognize the onset of micro-crack fracture signal.