• Title/Summary/Keyword: Crack sensor

Search Result 187, Processing Time 0.028 seconds

Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia (Y-TZP zirconia의 기계적 표면처리가 파절저항과 접착계면 실패에 미치는 영향)

  • Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Purpose: Surface damage and bonding strength difference after micromechanical treatment of zirconia surface are to be studied yet. The aim of this study was to evaluate the difference of fracture resistance and bonding strength between more surface-damaged group from higher air-blasting particle size and pressure, and less damaged group. Materials and Methods: Disk shape zirconia ($LAVA^{TM}$) was sintered and air-blasted with $30{\mu}m$ particle size (Cojet), under 2.8 bar for 15 seconds, $110{\mu}m$ particle size (Rocatec), under 2.8 bar for 15 seconds, and $110{\mu}m$ particle size (Rocatec), under 3.8 bar for 30 seconds respectively. Biaxial flexure test and bonding failure load test were performed serially (n = 10 per group). For bonding test, specimens were bonded on the base material having similar modulus of elasticity of dentin with $200{\mu}m$-thick resin cement for tension of surface damage. Failure load of bonding was detected with acoustic emission (AE) sensor. Results: There were no significant differences both in the biaxial flexure test and bonding failure load test between groups (P > 0.05). Sub-surface cracks were all radial cracks except for two specimens. Conclusion: Within the limitations of no aging under monotonic load test, surface damage from higher air-blasting particle size and pressure was not significant. Evaluations of failure load with bonded zirconia disks was clinically relevant modality for surface damage and bonding strength, simultaneously.

Effects of Pd Addition Amount and Method on the Characteristics of SnO2 Semiconductor Thick Films for Alcohol Gas Sensors (Pd 첨가량 및 첨가방법이 알코올 센서용 SnO2 반도체 후막 특성에 미치는 영향 연구)

  • Kim, Jun-Hyung;Kim, Hyeong-Gwan;Lee, Ho-Nyun;Kim, Hyun-Jong;Lee, Hee-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.411-420
    • /
    • 2017
  • In this paper, two methods of making the Pd-added $SnO_2$ ($Pd-SnO_2$) powder with pure tetragonal phase by the hydrazine method were suggested and compared in terms of crystal structure, surface morphology, and alcohol gas response. One of the addition methods is to use $PdCl_2$ as a Pd source, the other is to use Pd-based organic with oleylamine (OAM). When Pd concentration was increased from 0 to 5 wt%, the average grain size of $Pd-SnO_2$ made with Pd-OAM were decreased from 32 to 12 nm. In the case of using with $PdCl_2$, grain size of the $PdCl_2$ fell to less than 10 nm. However, agglomerated and extruded surface morphology was observed for the films with Pd addition over 4 wt%. The crack-free $Pd-SnO_2$ thick films were able to successfully fill the $30{\mu}m$ gap of patterned Pt electrodes by optimized ink dropping method. Also, the 2 wt% $Pd-SnO_2$ thick film made with PdCl2 showed gas responses ($R_{air}/R_{gas}$) of 3.7, 5.7 and 9.0 at alcohol concentrations of 10, 50 and 100 ppm, respectively. On the other hand, the prepared 3 wt% $Pd-SnO_2$ thick film with Pd-OAM exhibited very excellent responses of 3.4, 6.8 and 12.2 at the equivalent measurement conditions, respectively. The 3 wt% $Pd-SnO_2$ thick film with Pd-OAM has a specific surface area of $31.39m^2/g$.

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Mechanical Properties of Fiber-reinforced Cement Composites according to a Multi-walled Carbon Nanotube Dispersion Method (다중벽 탄소나노튜브의 분산방법에 따른 섬유보강 시멘트복합체의 역학적 특성)

  • Kim, Moon-Kyu;Kim, Gyu-Yong;Pyeon, Su-Jeong;Choi, Byung-Cheol;Lee, Yae-Chan;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.203-213
    • /
    • 2024
  • This study delves into the mechanical properties of fiber-reinforced cement composites(FRCC) concerning the dispersion method of multi-walled carbon nanotubes(MWCNTs). MWCNTs find utility in industrial applications, particularly in magnetic sensing and crack detection, owing to their diverse properties including heat resistance and chemical stability. However, current research endeavors are increasingly directed towards leveraging the electrical properties of MWCNTs for self-sensing and smart sensor development. Notably, achieving uniform dispersion of MWCNTs poses a challenge due to variations in researchers' skills and equipment, with excessive dispersion potentially leading to deterioration in mechanical performance. To address these challenges, this study employs ultrasonic dispersion for a defined duration along with PCE surfactant, known for its efficacy in dispersion. Test specimens of FRCC are prepared and subjected to strength, drawing, and direct tensile tests to evaluate their mechanical properties. Additionally, the influence of MWCNT dispersion efficiency on the enhancement of FRCC mechanical performance is scrutinized across different dispersion methods.

Bridge Safety Determination Edge AI Model Based on Acceleration Data (가속도 데이터 기반 교량 안전 판단을 위한 Edge AI 모델)

  • Jinhyo Park;Yong-Geun Hong;Joosang Youn
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • Bridges crack and become damaged due to age and external factors such as earthquakes, lack of maintenance, and weather conditions. With the number of aging bridge on the rise, lack of maintenance can lead to a decrease in safety, resulting in structural defects and collapse. To prevent these problems and reduce maintenance costs, a system that can monitor the condition of bridge and respond quickly is needed. To this end, existing research has proposed artificial intelligence model that use sensor data to identify the location and extent of cracks. However, existing research does not use data from actual bridge to determine the performance of the model, but rather creates the shape of the bridge through simulation to acquire data and use it for training, which does not reflect the actual bridge environment. In this paper, we propose a bridge safety determination edge AI model that detects bridge abnormalities based on artificial intelligence by utilizing acceleration data from bridge occurring in the field. To this end, we newly defined filtering rules for extracting valid data from acceleration data and constructed a model to apply them. We also evaluated the performance of the proposed bridge safety determination edge AI model based on data collected in the field. The results showed that the F1-Score was up to 0.9565, confirming that it is possible to determine safety using data from real bridge, and that rules that generate similar data patterns to real impact data perform better.

Quality Characteristics of Cookies Prepared with Fresh and Steamed Garlic Powders (생마늘 및 증숙마늘 분말 첨가 쿠키의 품질특성)

  • Lee, Soo-Jung;Shin, Jung-Hye;Choi, Duck-Joo;Kwen, O-Chen
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.1048-1054
    • /
    • 2007
  • The quality characteristics of cookies, prepared with the freeze dried fresh garlic (FGP) and steamed ($100^{\circ}C$, 20 min) garlic (SGP) powders, were investigated. The cookie samples in the present study were made by adding the garlic powders at different levels (0, 0.5, 1, 2, 4, and 6%). The highest spread ratio, $8.48{\pm}0.31$ and $8.62{\pm}0.21$, were obtained by mixing 6% FGP and 0.5% SGP with the cookies. Among the surface color of the cookies, the L-value decreased with increasing garlic powder contents compared to that of the control group, but the difference in the surface color among the kinds of garlic powders was insignificant. Although increases in the garlic powder content resulted in no noticeable difference among the a-value of the test group, the b-value was decreased significantly, particularly with increasing SGP contents. Hardness was also increased along with the garlic powder contents and was highest at its 2% content. When viewed from the sensor properties, the measured color tended to become brown at the garlic powder contents greater than 2%. The surface crack of the cookies also increased as the SGP content increased. Its garlic taste and flavor were slightly low at SGP added with 6% garlic powder content than FGP. The overall acceptability was higher in $0.5{\sim}4%$ added test samples than those in control group sample; it was highest for 1%, 2% and 0.5%, in decreasing order. In the sensor evaluation, the overall acceptability of the cookies was considerably different in the comparison of FGP added cookies with SGP added ones. Therefore, the optimal ratio investigated for making the garlic added cookies was shown to be 1 %, and its acceptability was relatively high for SGP added cookies.