• Title/Summary/Keyword: Crack self-healing

Search Result 80, Processing Time 0.035 seconds

Effect of Cementitious Materials on Compressive Strength and Self-healing Properties of Cement Mortars Containing Chitosan-Based Polymer

  • Jae-In Lee;Chae-Young Kim;Joo-Ho Yoon;Se-Jin Choi
    • Architectural research
    • /
    • v.25 no.3
    • /
    • pp.53-59
    • /
    • 2023
  • Concrete is widely used in the construction industry; however, it has the disadvantage of deteriorating durability due to cracks occurring because of climate change and shrinkage. In addition, when cement is used as a binder, CO2 emitted during the manu-facturing process accounts for ~8% of global CO2 emissions. In this study, ecofriendly cementitious materials such as blast furnace slag powder and fly ash (FA) were used as cement substitutes in the production of mortar containing a chitosan-based polymer (CP), and their fluidity, compressive strength, and self-healing performance were examined. The 28-day compressive strength of the control sample was ~32.4 MPa (the lowest for all tested samples), while that of the sample containing 5% CP and 20% FA was ~49.6 MPa (the highest for all tested samples) and ~53.1% higher than that of the control sample. Even at a healing age of 56 days, the control sample exhibited the lowest healing performance, whereas the samples containing CP (5%, 10%) and 20% FA demonstrated excellent healing performance. After 28 days, the decrease in crack size for the control sample was minimal; however, for the sample containing only cement and CP, a significant decrease in crack size was observed even after 28 days. This study confirmed that the appropriate use of CP and cementitious materials improves not only compressive strength but also the selfhealing performance of mortar.

Evaluation on the Material Properties of Waterproof Concrete with Self-healing Admixture (자가치유형 구체방수 콘크리트의 기초물성 평가)

  • Jeon, Hong-Mim;Lee, Jong-Yun;Hong, Seok-Beom;Kim, Jin-Keun;Lee, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.415-416
    • /
    • 2009
  • Concrete with Self-healing Admixture provides waterproof protection by using a organic-inorganic chemical compound throughout the concrete. Using cement chemicals eliminate the need to use additional waterproofing, If crack is occurred, this system enhance self-healing ability to increase the structural safety. In this study, we investigate material properties to conclude mixture rate of concrete to apply a construction site.

  • PDF

The Effect of Processing Parameters to Manufacture Self-healing Microcapsules for Composite Materials (복합재료의 자가 치료용 캡슐 제작시 공정 변수들의 영향)

  • Yoon, YoungKi;Yoon, HiSeak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.135-141
    • /
    • 2001
  • An experimental study to find the effect of processing parameters for self-healing microcapules is performed. These microcapsules can be applied to accomplish the healing of delamination damage in woven E-glass/epoxy composites. This paper introduces the self-healing concept and presents a method for solving the microcapsule size and shape. Additionally, processing parameters are varied during the formation of microcapsules and these capsules are observed through optical microscope. To obtain thermogravimetric(TG) curve for the manufactured microcapsules, TGA tests are executed. From these results, the best processing conditions for the formation of capsules are found as follows: (1) temperature of solution $ 50^{\circ}C$, (2) potential of hytdrogen(pH) 3.5ppm, and (3) agitation 500~600rpm.

  • PDF

An Experimental Study on the Quality and Crack Healing Properties of Self-Healing Mortar Containing Solid Capsules using Crystal Growth Type Inorganic Materials (결정성장형 무기재료 활용 고상 캡슐을 혼합한 자기치유 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.120-128
    • /
    • 2020
  • In this study, solid capsules using crystal growth-type inorganic materials that can be directly mixed with mortar were prepared. Thus, three levels of solid capsules were prepared. The prepared solid capsule was mixed with 3% of the cement mass, was evaluated quality and crack healing properties of the mortar. As a test results of the table flow and air content of the mortar mixed with the solid capsules showed that mix of the solid capsules was no effect on the table flow and air volume. As a test result of the crack healing properties of the mortar mixed with the solid capsule according to water flow test and crack closing test, the initial flow rate was decreased, it was confirmed that the reaction product occurred over time and the cracks were healed.

Effect of Crack Control Strips at Opening Corners on the Strength and Crack Propagation of Downsized Reinforced Concrete Walls (축소 철근콘크리트 벽체의 내력과 균열진전에 대한 개구부모서리 균열제어 띠의 영향)

  • Wang Hye-Rin;Yang Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.40-47
    • /
    • 2022
  • The present study aimed to examine the effectiveness of different techniques for controlling the diagonal cracks at the corners of openings on the strength, deformation, and crack propagation in reinforced concrete walls. The crack control strip proposed in this study, the conventional diagonal steel reinforcing bars, and stress-dispersion curved plates were investigated for controlling the diagonal cracks at the opening corners. An additional crack self-healing function was also considered for the crack control strip. To evaluate the volume change ratio and crack width propagation around the opening, downsized wall specimens with a opening were tested under the diagonal shear force at the opening corner. Test result showed that the proposed crack control strip was more effective in reducing the volume change and controlling the crack width around the opening when compared to the conventional previous methods. The crack control strip with crack healing feature displayed the superior performance in improving the strength of the wall and reducing the crack width while healing cracks occurred in the previous tests.

Effects of Healing Agent on Crack Propagation Behavior in Thermal Barrier Coatings

  • Jeon, Soo-Hyeok;Jung, Sung-Hoon;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.492-498
    • /
    • 2017
  • A thermal barrier coating (TBC) with self-healing property for cracks was proposed to improve reliability during gas turbine operation, including structural design. Effect of healing agent on crack propagation behavior in TBCs with and without buffer layer was investigated through furnace cyclic test (FCT). Molybdenum disilicide ($MoSi_2$) was used as the healing agent; it was encapsulated using a mixture of tetraethyl orthosilicate and sodium methoxide. Buffer layers with composition ratios of 90 : 10 and 80 : 20 wt%, using yttria stabilized zirconia and $MoSi_2$, respectively, were prepared by air plasma spray process. After generating artificial cracks in TBC samples by using Vickers indentation, FCTs were conducted at $1100^{\circ}C$ for a dwell time of 40 min., followed by natural air cooling for 20 min. at room temperature. The cracks were healed in the buffer layer with the healing agent of $MoSi_2$, and it was found that the thermal reliability of TBC can be enhanced by introducing the buffer layer with healing agent in the top coat.

Evaluation of Self-Healing Performance Using Hydration Model of Portland Cement and Clinker (포틀랜드시멘트와 클링커의 수화모델을 이용한 자기치유 성능평가)

  • Choi, Sang-Hyeon;Park, Byoung-Sun;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.81-87
    • /
    • 2020
  • Crack control is essential to increase the durability of concrete significantly. Healing of crack can be controlled by rehydration of unreacted clinkers at the crack surface. In this paper, by comparing the results of isothermal calorimetry test and regression analysis, the Parrot & Killoh's cement hydration model was verified and clink er hydration model was proposed. The composition and quantification of hydration products were simulated by combining kinematic hydration model and thermodynamic model. Hydration simulation was conducted using the verified and proposed hydration model, and the simulation was performed by the substitution rate of clink er. The type and quantity of the final hydration product and healing product were predicted and, in addition, the optimal cementitious material of self-healing concrete was selected using the proposed hydration model.

Investigation on the Self-Healing Performance of Cement Mortar Incorporating Inorganic Expansive Additives (무기질계 팽창재가 포함된 시멘트 모르타르의 자기치유성능에 관한 연구)

  • Shin, Jin-Wook;Her, Sung-Wun;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.404-412
    • /
    • 2020
  • Herein, the properties and self-healing performance of cement mortar incorporating calcium sulfoaluminate(CSA), crystalline admixture(CA), and magnesium oxide(MgO) were investigated. Mortar strength test and water permeability experiments were conducted to analyze self-healing performance of the mortar. Also, variation in crack width were measured via digital optical microscope observation. The hydration products formed in the crack via self-healing were analyzed using x-ray diffraction(XRD), thermogravimetry(TG), and digital optical microscope. The analysis revealed that compressive strength and tensile strength increased as CA substitutional ratio increased. However, in the case of MgO replacement, the compressive strength and tensile strength decreased as the CA substitution ratio increased. The products in the recovered cracks are found to be mostly Ca(OH)2, MgCO3, and CaCO3. CaCO3 was shown to be the main healing product and had a higher portion than Ca(OH)2 and MgCO3 in the recovery products. Moreover, the optimal mix derived via water permeability and crack width results was 8% CSA + 1% CA + 2.5% MgO.

Effect of Bacteria on the Rebar Corrosion (철근 부식에 자기치유 박테리아가 미치는 영향)

  • Jang, Indong;Park, Jiyoon;Son, Dasom;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.221-222
    • /
    • 2021
  • Bacterial self-healing concrete is known to improve the durability of concrete by preventing the propagation of microcracks. In the literature, bacteria prevent the corrosion of rebar by inhibiting water transfer through crack, but also can promote the corrosion by acting as an ion acceptor in the rust generation mechanism. Therefore in this study, the electrochemical analysis of bio-filmed rebar was conducted to explore the effects of the self-healing bacteria on the bare rebar without cement composite. As a result of the experiment contradicting trends for Ecorr and Icorr occurred and additional experiment will be conducted in various environments to collect data on the mechanism of corrosion of rebar by bacteria.

  • PDF

Visualization of Self-Healing Function of Protective Coating for Concrete (콘크리트 보호코팅재의 자기치유 기능의 시각화)

  • Kim, Dong-Min;Choi, Ju-Young;Jin, Seung-Won;Nam, Kyeong-Nam;Park, Hyeong-Joo;Chung, Chan-Moon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.87-93
    • /
    • 2019
  • Microcapsules were prepared by using a mixture of linseed oil and a small amount of fluorescent fluid as a core material. Self-healing protective coatings were prepared by applying coating formulations containing varying amounts of microcapsules on mortar surface. After scratch or crack was generated in the coating, when the damaged region was exposed to ultraviolet light (${\lambda}=365nm$), it was observed that fluorescence emission area increased with increasing microcapsule loading. In the cases of the self-healing coatings having 20wt% or more microcapsule loading, the damaged region was almost filled with the healing agent. In water sorptivity test, the self-healing coating having 20wt% or more microcapsule loading showed a healing efficiency of about 85%. The fluorescence emission from the damaged region was easily observed at a distance of 3 m. The self-healing protective coating is expected to be useful to confirm its self-healing function with the eye.