• Title/Summary/Keyword: Crack propagation directions

Search Result 38, Processing Time 0.026 seconds

A Study on the Safety Evaluation of Design for Piping Materials (I) (배관용재료의 설계시 안전성 평가에 관한 연구(I))

  • 김복기
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.3-9
    • /
    • 1995
  • Several piping material test methods have been developed as a result of advances in elastic-plastic fracture mechanics. It's known that, crack propagation of the materials strongly governed by the $J_{Ic}$ value. But the value is still difficult to be obtained because of it's complicate and troble-some determination process. In this paper, to prove the validity of the developed test procedure a series of tests were peformed at various temperatures and for different material directions. directions.

  • PDF

An Experimental Study on Crack Growth in Rock-like Material under Monotinic and Cyclic Loading (단조증가 및 반복하중 하에서 모사 암석 시료의 균열 성장에 관한 실험적 연구)

  • Ko, Tae-Young;Lee, Seung-Cheol;Kim, Dong-Keun;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.307-319
    • /
    • 2011
  • Cyclic loading due to traffic, excavation and blasting causes microcrack growth in rocks over long period of time, and this type of loading often causes rock to fail at a lower stress than its monotonically determined strength. Thus, the crack growth and coalescence under cyclic loading are important for the long-term stability problems. In this research, experiments using gypsum as a model material for rock are carried out to investigate crack propagation and coalescence under monotonic and cyclic loading. Both monotonic and cyclic tests have a similar wing crack initiation position, wing crack initiation angle, cracking sequence and coalescence type. Three types of crack coalescence were observed; Type I, II and III. Type I coalescence occurs due to a shear crack and Type II coalescence occurs through one wing or tension crack. For Type III, coalescence occurs through two wing or tension cracks. Fatigue cracks appear in cyclic tests. Two types of fatigue crack initiation directions, coplanar and horizontal directions, are observed.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • Kim, K.T.;Suh, J.;Cho, Y.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.20-28
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test($\tau$/$\sigma$= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio $\tau$/$\sigma$. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

  • PDF

Evaluation of a Back Face Strain Compliance of CT specimen (CT시험편의 Back Face Strain Compliance 평가)

  • Kim, Won Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.686-691
    • /
    • 2016
  • In welded steel structures, there are many stress concentration sites such as weld beads, and welding defects are likely to occur at the welded parts. When a repeated fatigue load acts on a stress concentration site, fatigue crack occurs and propagates, leading to fatigue fracture. Therefore, it is necessary to understand fatigue life, crack initiation life, and crack propagation life in order to prevent fatigue failure. In this study, a compliance method was derived for use in the study of fatigue crack propagation characteristics. This compliance can be used for automated measurement of fatigue cracks. The compliance was calculated using an in-house FEM program for a CT specimen. The results of this calculation are presented in relation to a/W and compared with calculation results using the J integral and a program from a previous study. In addition, the strain distribution in the upward and downward directions was calculated from the center of the back face of the CT specimen. In this distribution, the strain tended to decrease from the center to the top and bottom. The compliance method was achieved from these calculations and can be used for automatic execution of crack propagation tests.

Fatigue Behavior of Friction Welded Material of Domestic Dissimilar Steels - In Case of SM 45C to SUS304 Friction Welded Steel - (國산 異種鋼을 摩擦壓接한 경우의 疲勞擧動)

  • 송삼홍;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.953-962
    • /
    • 1987
  • Domestic dissimilar structural steels, SM 45 C and SUS304 were friction welded under optimal welding condition and the micro-artificial holes were drilled at SM 45 C base metal, SM 45 C HAZ, welded zone, SUS 304 HAZ, and SUS 304 base metal for fatigue behavior tests. In this study, the fatigue limit and the behavior of micro-crack propagation, crack propagation rate, and its dependency on stress intensity factor under the low stress level and high stress level of bending stress have been investigated. The results obtained are as follows. (1) The fatgiue strength of the portion of SM45C B.M., SM45C HAZ, welded zune, SUS304 HAZ and SUS304 B.M. on notched friction welded specimens are 20 kgf/mm$^{2}$, 32 kgf/mm$^{2}$, 27kgf/mm$^{2}$, 29kgf/mm$^{2}$, and 29kgf/mm$^{2}$, respectively. (2) The fatigue strength of welded zone of unnotched and notched specimens are 32.5kgf/mm$^{2}$, and 27kgf/mm$^{2}$, respectively. (3) Micro-crack initiation in the welded zone, HAZ, and each base metals occurrs simultaneously in front and rear of micro-hole tips in the view of the rotational directions. (4) Fatigue crack propagates more slowly in the welded zone than in another protions of specimen, regardless of the magnitude of the stress level. (5) Fatigue crack propagation rates were plotted as a function of stress intensity range. The value of m in the equation da/dN=C(.DELTA.K)$^{m}$ was found to range from 2.09-2.55 in this study.

Semi-Empirical Prediction of Crack Width of the Strengthened Bridge Deck with External Bonding Plastic (외부부착 보강된 교량 바닥판 균열폭의 반경험적인 예측)

  • 심종성;오홍섭
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.231-238
    • /
    • 2002
  • Dry shrinkage md temperature change cause to develope concrete bridge decks on main girders have initial unidirectional cracks in longitudinal or transverse direction. As they receive traffic loads, the crack gradually propagate in different directions depending on the concrete dimension and reinforcement ratio. Since existing equations that predict crack width are mostly based on the one directional bond-slip theory, it is difficult to determine the actual crack width of a bridge deck with varying the spacing of rebar or strengthening material and to estimate the improvement rate in serviceability of the strengthened bridge deck. In this study, crack propagation mechanism is identified based on the test results and a new crack prediction equation is proposed for evaluation of serviceability. Although more accurate results are derived using the proposed equation, the extent of error is increased as the strain of the rebar or the strengthening material increases after the yielding of rebar Therefore, further research is required to better predict the crack width after the rebar yields under fatigue loading condition.

Numerical Study on the Crack-propagation Controlling in Blasting Using Notched Charge Hole (노치 장약공을 이용한 발파균열제어에 관한 수치해석적 연구)

  • Cho, Sang-Ho;Park, Seung-Hwan;Kim, Kwang-Yeom;Nakamura, Yuichi;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • Mechanical excavation techniques employing tunnel boring machines (TBM) and rock splitters have been proposed to minimize rock damage for tunnel and underground waste repository facilities. Such a mechanical excavation, however, is extremely expensive and not applicable in all cases. For these reasons, controlled blasting using notched charge holes have been suggested to achieve crack growth along specific directions and inhibit growth along other directions. This study introduces a dynamic fracture process analysis code to simulate fracture processes of rock which has a notched charge hole.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • 김기태;서정;조윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.19-19
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test(τ/σ= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio τ/σ. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

Characteristics of Fatigue Crack Propagations with Respect to Loading Directions in Butt-Welded Steel Plates with the Same Direction of Rolling and Welding Bead (압연 및 용접방향이 같은 맞대기 용접강판의 하중방향에 따른 피로균열 진전특성)

  • Lee Yong-Bok;Kim Sung-Yeup;Oh Byung-Duck
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.37-42
    • /
    • 2005
  • Most of the welding steel plate structures have complicated mechanical problems such as rolling directional characteristics and residual stresses caused by manufacturing process. For the enhancement of reliability and safety in those structures, therefore, a systematic investigation is required. SS400 steel plate used for common structures was selected and welded by FCAW butt-welding process for this study, and then it was studied experimently about characteristics of fatigue crack propagations with respect to rolling direction and welding residual stress of welded steel plates. When the angles between rolling direction and tensile loading direction in base material are increased, their ultimate strength not show a significant difference, but yielding strength are increased and elongations are decreased uniformly. It is also shown that fatigue crack growth rate can be increased from those results. When the angles between welding bead direction and loading direction in welded material are increase, fatigue crack growth rate of them are decreased and influenced uniformly according to the conditions of residual stress distribution. In these results, it is shown that the welded steel plate structures are needed to harmonize distributed welding residual stress, rolling direction and loading direction fur the improvement of safety and endurance in manufacture of their structures.