• 제목/요약/키워드: Crack propagation directions

검색결과 38건 처리시간 0.023초

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

용접(鎔接)이음한 구조강(構造鋼)의 소인장시험편(小引張試驗片)에서의 피로구열진전거동(疲勞龜裂進展擧動) (용접방향(鎔接方向), 입열량(入熱量), 용접재료(鎔接材料)의 강도(强度) 등이 다를 때) (The Propagation Behaviour of the Fatigue Crack in the Compact Tension Specimens of the Welded Structural Steels (On according to the difference of the welding direction, the input heat level, the strength of weld material and so on))

  • 장동일;정영화
    • 대한토목학회논문집
    • /
    • 제4권2호
    • /
    • pp.133-142
    • /
    • 1984
  • 횡방향(橫方向)과 종방향(縱方向), 대입열용접(大入熱鎔接)과 소입열용접(小入熱鎔接), 모재(母材)와 같은 강도(强度)의 용접재료(鎔接材料) 사용(使用)과 모재(母材)보다 낮은 강도(强度)의 용접재료(鎔接材料) 사용(使用) 등으로 서로 비교되는 용접(鎔接)이음의 소인장시험편(小引張試驗片)을 만들어서 피로시험(疲勞試驗)을 행하여 피로구열(疲勞龜裂) 진전속도(進展速度) ${\frac{da}{dN}}$와 구열선단(龜裂先端) 부근의 응력확대계수(應力擴大係數)의 변동범위(變動範圍) ${\Delta}K$와의 관계곡선(關係曲線)을 그려서 비교시험간(比較試驗間)의 모재(母材), 열영향부(熱影響部) 및 용착금속부(鎔着金屬部)로 구분, 혹은 지금까지의 연구자료(硏究資料) 등과 비교검토하였다. 이 결과, 다음과 같은 현상들을 알 수 있었다. 기본적(基本的)으로, 용접방향(鎔接方向), 용접입열량(鎔接入熱量), 용접재료(鎔接材料)의 강도(强度), 혹은 모재(母材), 열영향부(熱影響部) 및 용착금속부(鎔着金屬部)의 구분 등에 따라 ${\frac{da}{dN}}-{\Delta}K$관계에 큰 차이가 없었다. 다만, 첫째, 소재(素材)에 대한 경우에 비해 대개 처음은 같은 ${\Delta}K$에서 ${\frac{da}{dN}}$가 상당히 늦다가 점차 증가하여 중간쯤에서 같아진 후 끝 부분에서 같은 ${\Delta}K$에서${\frac{da}{dN}}$가 다소 빨라짐을 알 수 있었다. 둘째, 열영향부(熱影響部)에서 용접금속부(鎔接金屬部)로 진전(進展)하면서 ${\frac{da}{dN}}$가 다소 늦어지는 것을 알 수 있었다. 셋째, 용접방향(鎔接方向)과 구열방향(龜裂方向)이 평행인 경우가 직각인 경우에 비해, 모재(母材)와 같은 용접재료(鎔接材料)를 쓴 경우 소입열용접(小入熱鎔接)인 경우가 대입열용접(大入熱鎔接)인 경우에 비해, 모재(母材)보다 낮은 용접재료(鎔接材料)를 쓴 경우 대입열용접(大入熱鎔接)인 경우가 소입열용접(小入熱鎔接)인 경우에 비해, 대입열(大入熱)의 평행용접(鎔接)의 경우를 제외한 모든 용접(鎔接)에서 모재(母材)와 같은 강도(强度)의 용접재료(鎔接材料)를 쓴 경우가 모재(母材)보다 낮은 강도(强度)의 용접재료(鎔接材料)를 쓴 경우에 비해 ${\Delta}K$가 낮은 시기(時期)에 일찍 저속(低速)으로 구열(龜裂)이 시작되어 ${\Delta}K$의 큰 증가없이 ${\frac{da}{dN}}$가 빠르게 증가한 다음 다른 경우와 같은 성상(性狀)으로 진전됨을 알 수 있었다. 넷째, 소입열용접(小入熱鎔接)의 경우 평행용접(鎔接)이 직각용접(鎔接)에 비해, 소입열용접(小入熱鎔接)이 대입열용접(大入熱鎔接)에 비해 같은 ${\Delta}K$에서 ${\frac{da}{dN}}$가 다소 늦은 것을 알 수 있었다.

  • PDF

국산재(國産材)의 파괴인성(破壞靭性)에 관한 연구(硏究)(I) - 모-드 I 파괴시(破壞時)의 파괴인성(破壞靭性) - (Study on the Fracture Toughness of Wood Grown in Korea(I) - Mode I Fracture Thoughness -)

  • 이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권4호
    • /
    • pp.70-76
    • /
    • 1989
  • The fracture toughness of two species, Pinus rigida MILL and Pinus koraiensis S. et Z. grown in Korea, was investigated by means of single edge notch beam specimen for the six principal systems of crack propagation in wood. The values of the fracture toughness for the LR and the LT systems ($K_{IC}$LR and $K_{IC}$LT) were found to be similar to each other and about 8 times greater than those for the other systems ($K_{IC}$RL, $K_{IC}$TL and $K_{IC}$TR) in both species. The results indicate that the characteristics of fracture toughness in three principal directions of wood (L, R, T direction) are quite different from those of bending strength for the responsible direction. To predict $K_{IC}$ value based on the variation of specific gravity, the experimental values of $K_{IC}$LT and $K_{IC}$TL were compared to the predicted values by published relationship between $K_{IC}$ and specific gravity. However, there were 10 to 25% differences between the former and the latter.

  • PDF

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.

Evaluation of shear-key misalignment in grouted connections for offshore wind tower under axial loading

  • Seungyeon Lee;Seunghoon Seo;Seungjun Kim;Chulsang Yoo;Goangseup Zi
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.509-518
    • /
    • 2024
  • In this study, we investigated the effect of shear-key placement on the performance of grouted connections in offshore wind-turbine structures. Considering the challenges of height control during installation, we designed and analyzed three grouted connection configurations. We compared the crack patterns and strain distribution in the shear keys under axial loading. The results indicate that the misalignment of shear keys significantly influences the ultimate load capacity of grouted connections. Notably, when the shear keys were positioned facing each other, the ultimate load decreased by approximately 15%, accompanied by the propagation of irregular cracks in the upper shear keys. Furthermore, the model with 50% misalignment in the shear-key placement exhibited the highest ultimate strength, indicating a more efficient load resistance than the reference model. This indicates that tensile-load-induced cracking and the formation of compressive struts in opposite directions significantly affect the structural integrity of grouted connections. These results demonstrate the importance of considering buckling effects in the design of grouted connections, particularly given the thin and slender nature of the inner sleeves. This study provides valuable insights into the design and analysis of offshore wind-turbine structures, highlighting the need for refined design formulas that account for shifts in shear-key placement and their structural implications.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • 제30권6호
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

화강암 지반에서 진동 및 크랙측정치 분석에 관한 연구 (A study on analysis of vibration and crack measurement data on granite-bed rock)

  • 한동훈;안명석;이광열;오병삼;강문구
    • 한국터널지하공간학회 논문집
    • /
    • 제5권3호
    • /
    • pp.251-260
    • /
    • 2003
  • 터널 발파에 있어서 진동특성을 규명하기 위하여 브이-컷 심발패턴으로 시험발파를 수행하고, '터널 진행방향'과 '터널 진행직각방향'의 두 방향에서 발파진동을 계측하였다. 최대 지발당 장약량을 기준으로 지반의 진동전달 특성을 확인하기 위하여 자승근 환산거리와 삼승근 환산거리로 회귀분석을 수행한 결과 5mm/sec에서 교차점은 35~45m였으며 터널 진행방향에서 측정한 경우가 터널진행직각방향에서 측정한 경우보다 진동수준과 진동감쇠가 더욱 크게 나타났으며, 근거리에서 이루어지는 터널발파의 경우 삼승근 환산거리 방식으로 설계하는 것이 더욱 바람직하였다. 또한 발파가 없었던 시기에 사전균열조사결과에서는 미소량의 균열이 진행되고 있었으며, 공사기간중 균열조사 결과는 옥외구조물의 균열허용기준치 0.33mm대비 51.5~81.8%였다.

  • PDF

The comparison between NBD test results and SCB test results using experimental test and numerical simulation

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Naderi, K.;Fatehi Marji, Mohammad;Guo, Mengdi
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.83-99
    • /
    • 2022
  • The two, NBD and SCB tests using gypsum circular discs each containing a single notch have been experimentally accomplished in a rock mechanics laboratory. These specimens have also been numerically modelled by a two-dimensional particle flow which is based on Discrete Element Method (DEM). Each testing specimen had a thickness of 5 cm with 10 cm in diameter. The specimens' lengths varied as 2, 3, and 4 cm; and the specimens' notch angles varied as 0°, 45° and 90°. Similar semi-circular gypsum specimens were also prepared each contained one edge notch with angles 0° or 45°. The uniaxial testing machine was used to perform the experimental tests for both NBD and SCB gypsum specimens. At the same time, the numerical simulation of these tests were performed by PFC2D. The experimental results showed that the failure mechanism of rocks is mainly affected by the orientations of joints with respect to the loading directions. The failure mechanism and fracturing patterns of the gypsum specimens are directly related to the final failure loading. It has been shown that the number of induced tensile cracks showing the specimens' tensile behavior, and increases by decreasing the length and angle of joints. It should be noted that the fracture toughness of rocks' specimens obtained by NBD tests was higher than that of the SCB tests. The fracture toughness of rocks usually increases with the increasing of joints' angles but increasing the joints' lengths do not change the fracture toughness. The numerical solutions and the experimental results for both NDB and SCB tests give nearly similar fracture patterns during the loading process.