• Title/Summary/Keyword: Crack opening displacement

Search Result 227, Processing Time 0.024 seconds

New Engineering Estimation Method of J-Integral and COD for Circumferential Through-Wall Cracked Pipes (원주방향 관통균열이 존재하는 배관의 J-적분 및 COD 계산을 위한 새로운 공학적 계산식)

  • Kim, Yun-Jae;Heo, Nam-Su;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.548-553
    • /
    • 2001
  • A new method to estimate the elastic-plastic J-integral and the crack tip opening displacement (COD) for circumferential through-wall cracked pipes under tension and under bending is proposed for Leak-Before-Break (LBB) analysis. Being based on the reference stress method with further modifications, the proposed method is simple to use and easy to be generalised in practice. Comparison of the CODs, predicted using the proposed method with published pipe test data show overall excellent agreement.

Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites (입자강화 복합재료의 쐐기분열시험 및 파괴에너지 평가)

  • Na, Seong Hyeon;Kim, Jae Hoon;Choi, Hoon Seok;Park, Jae Beom;Kim, Shin Hoe;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.253-258
    • /
    • 2016
  • The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement (CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were $50^{\circ}C$, room temperature, $-40^{\circ}C$, and $-60^{\circ}C$. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from $50^{\circ}C$ to $-40^{\circ}C$. In addition, the strength of the particulate reinforced composites increased sharply at $-60^{\circ}C$, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

Effect of Nozzle on Leak-Before-Break Analysis Result of Nuclear Piping (노즐이 원자력 배관의 파단전누설 해석 결과에 미치는 영향)

  • Kim, Yeong-Jin;Heo, Nam-Su;Gwak, Dong-Ok;Yu, Yeong-Jun;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2796-2803
    • /
    • 2000
  • For traditional Leak-Before-Break(LBB) analyses, symmetric conditions were assumed for a pipe-nozzle interface to simplify the analysis in calculating J-integral. However. this assumption could result in an overly conservative design criteria for a pipe-nozzle interface, Since the pipe-nozzle interface is asymmetric due to the difference of stiffness between pipe and nozzle, it is required to develop a new methodology considering the nozzle effect. The objective of this paper is to evaluate the effect of nozzle no the development of LBB design criteria for nuclear pipings. For this purpose, extensive finite element analysis were performed to evaluate the effect of nozzle on Crack Opening Area(COA), Detectable Leakage Crack(DLC) length and J-integral values. In conclusion, it was proven that the application of LBB concept could be extended for more nuclear piping system by considering the nozzle.

Fracture Analysis Based on the Critical-CTOA Criterion (임계 CTOA조건을 이용한 파괴해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2223-2233
    • /
    • 1993
  • An engineering method is suggested to calculate the applied load versus crack extension in the elastic-plastic fracture. The condition for an increment of crack extension is set by a critical increment of crack-up opening displacement(CTOD). The ratio of the CTOD increment to the incremental crack extention is a critical crack-tip opening angle(CTOA), assumed to be constant for a material of a given thickness. The Dugdale model of crack-tip deformation in an infinite plate is applied to the method, and a complete solution for crack extension and crack instability is obtained. For finite-size specimens of arbitrary geometry in general yielding, an approximate generalization of the Dugdale model is suggested so that the approximation approaches the small-scale yielding solution in a low applied load and the finite-element solution in a large applied load. Maximum load is calculated so that an applied load attains either a limit load on an unbroken ligament or a peak load during crack extension. The proposed method was applied to three-point bend specimens of a carbon steel SM45C in various sizes. Reasonable agreements are found between calculated maximum loads and experimental failure loads. Therefore, the method can be a viable alternative to the J-R curve approach in the elastic-plastic fracture analysis.

Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel (중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

Estimation of Elastic Fracture Mechanics Parameters for Slanted Axial Through-Wall Cracks for Leak-Before-Break and Crack Growth Analysis (파단전누설 해석 및 균열거동 평가를 위한 축방향 경사관통균열의 탄성 응력확대계수 및 균열열림변위)

  • Huh, Nam-Su;Shim, Do-Jun;Choi, Suhn;Park, Keun-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.725-726
    • /
    • 2008
  • This paper proposes elastic stress intensity factors and crack opening displacements (CODs) for a slanted axial through-wall cracked cylinder under an internal pressure based on detailed 3-dimensional (3-D) elastic finite element (FE) analyses. Based on the elastic FE results, the stress intensity factors along the crack front and CODs through the thickness at the center of the crack were provided. These values were also tabulated for three selected points, i.e., the inner and outer surfaces and at the mid-thickness. The present results can be used to evaluate the crack growth rate and leak rate of a slanted axial through-wall crack due to stress corrosion cracking and fatigue. Moreover, the present results can be used to perform a detailed Leak-Before-Break analysis considering more realistic crack shape development.

  • PDF

Evaluation of the Crack Initiation of Curved Compact Tension Specimens of a Zr-2.5Nb Pressure Tube Using the Unloading Compliance and Direct Current Potential Drop Methods (제하 컴플라이언스법 및 직류전위차법을 이용한 Zr-2.5Nb 압력관 휘어진 CT 시편의 균열시작 평가)

  • Jeong, Hyeon-Cheol;Ahn, Sang-Bok;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1118-1122
    • /
    • 2005
  • The direct current potential drop (DCPD) method and the unloading compliance (UC) method with a crack opening displacement gauge were applied simultaneously to the Zr-2.5Nb curved compact tension (CCT) specimens to determine which of the two methods can precisely determine the crack initiation point and hence the crack length for evaluation of their fracture toughness. The DCPD method detected the crack initiation at a smaller load-line displacement compared to the UC method. As a verification, a direct observation of the fracture surfaces on the curved compact tension specimens was made on the CCT specimens experiencing either 0.8 to 1.0 mm load line displacement or various loads from $50\%\;to\;80\%$ of the maximum peak load, or $P_{max}$. The DCPD method is concluded to be more precise in determining the crack initiation and fracture toughness, J in Zr-2.5Nb CCT specimens than the UC method.

Effect of Vertical Ground Motion on Earthquake Response of Concrete Dams (콘크리트댐 지진응답에서의 수직 지반운동의 영향)

  • 이지호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.190-195
    • /
    • 2001
  • In the present paper computational simulation of a concrete dam is performed to determine the effect of vertical ground motions on earthquake response of concrete dams. Cyclic and dynamic versions of the plastic-damage model proposed by Lee and Fenves are used to represent micro-crack development and crack opening/closing, which is important mechanism in nonlinear damage analysis of concrete structures subject to strong earthquake loading. The result shows that the vertical component of ground motion effects on final crack patterns and consequently, on displacement response.

  • PDF

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

Combined Mode I / III Stress Intensity Factor Analysis of a Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드 I / III 균열의 응력확대 계수해석 - 3차원 유한요소해석 중심으로 -)

  • 양원호;최용식;조명래
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.112-120
    • /
    • 1993
  • Variable thickness plates are commonly encountered in the majority of mechanical/structural components of industrial applications. And, as a result of the unsymmetry of the structure or the load and the anisoptropy of the materials, the cracks in engineering structures are generally subjected to combined stresses. In spite of considerable practical interest, however, a few fracture mechanics study on combined mode crack in a variable thickness plate have carried out. In this respect, combined mode 1/3 stress intensity factors $K_{1}$ and $K_{3}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a central slant crack were chosen. the parameters used in this study were dimensionless crack length .lambda. crack slant angle .alpha, thickness ratio .betha. and width ratio .omega. Stress intensity factors were calculated by crack opening displacement(COD) and crack tearing displacement(CTD) method proposed by Ingraffea and Manu. The effect of thickness ratio .betha. on $K_{1}$ is relatively great in comparison to $K_{3}$.

  • PDF