• Title/Summary/Keyword: Crack opening displacement

Search Result 227, Processing Time 0.02 seconds

Stress Intensity Factors of Combined Mode(Mode I/II) Crack in a Variable Thickness Plate (두께가 변화하는 부재 내의 혼합모드(모드 I/II) 균열의 응력확대계수)

  • 조명래;양원호;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1875-1882
    • /
    • 1993
  • Variable thickness plates are commonly used as structural members in the majority of industrial sectors. Previous fracture mechanics researches on variable thickness plates were limited to mode I loading cases. In practice, however, cracks are usually located inclined to the loading direction. In this respect, combined mode(mode I/II) stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a slant edge crack were chosen. The parameters used in this study were dimensionless crack $length{\lambda}$, slant $angle{\alpha}$, thickness $ratio{\beta}$ and width ratio{\omega}$. Stress intensity factors were calculated by crack opening displacement(COD) and crack sliding displacement(CSD)method proposed by Ingraffea and Manu.

Crack Opening Displacement Estimation for Engineering Leak-Before-Break Analyses of Pressurized Nuclear Piping (원자력 배관의 공학적 파단전누설 해석을 위한 균열열림변위 계산)

  • Huh Nam-Su;Kim Yun-Jae;Chang Yoon-Suk;Yang Jun-Seok;Choi Jae-Boons
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1612-1620
    • /
    • 2004
  • This study presents methods to estimate elastic-plastic crack opening displacement (COD) fur circumferential through-wall cracked pipes for the Leak-Before-Break (LBB) analysis of pressurized piping. Proposed methods are based not only on the GE/EPRI approach but also on the reference stress approach. For each approach, two different estimation schemes are given, one for the case when full stress-strain data are available and the other fur the case when only yield and ultimate tensile strengths are available. For the GE/EPRI approach a robust way of determining the Ramberg-Osgood (R-O) parameters is proposed, not only fur the case when detailed information on full stress-strain data is available but also for the case when only yield and ultimate tensile strengths are available. The COD estimates according to the GE/EPRI approach, using the R-O parameters determined from the proposed R-O fitting procedures, generally compare well with the published pipe test data. For the reference stress approach, the COD estimates according to the method based on both full stress-strain data and limited tensile properties are in good agreement with pipe test data. In conclusion, experimental validation given in the present study provides sufficient confidence in the use of the proposed method to practical LBB analyses even though when information on material's tensile properties is limited.

Calculation of J-Integral by CMOD at Impact Behavior of 3-Point Bend Specimen (삼점 굽힘 시험편의 충격 거동에 있어서의 CMOD에 의한 J-적분의 계산)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.542-546
    • /
    • 2005
  • The J-integral used as a ductile crack initiation criterion has been discussed for the impact loaded elastic-plastic 3PB specimens. The experimental method to measure or estimate the J-integral history has been investigated and its result has been compared to the obtained elastic-plastic values by the finite element model of this study. These numerical results and the experimental curves are found to agree closely. J-integral can be calculated by only numerical analysis with the finite element model. It is proved that simple calculation can be made in order to find the possible value of J-integral by crack mouth opening displacement(CMOD) in the dynamic nonlinear fracture experiment of 3-point bend(3PB) specimen. The property of elastic-plastic material is considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directly kom photographs taken during impact experiments.

  • PDF

A Study on tho Effcct of Strcss Ratio on Fatigue Crack Growth Behavior (피로성장거동의 응력비 영향에 관한 연구)

  • 최용식;한지원;김규성
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.21-26
    • /
    • 1991
  • In this study, a crack closure behavior of Al-alloy 5052-H38 was investigated. The fatigue test was performed by the four-point bending test under the contast amplitude load. Stress ratio R was changed from-1.0 to 0.5. To mcasure the fatigue crack opening point, the graph of load vs. subtracted displacement by computer program was obtained from the X - Y plotter. In order to gain the displacement data, a strain gage was attached at the back surface against the notched side. Uslng the conception of crack closure and influence of on crack growth rate a model for crack growth rate is developed for Al-alloy 5052-H38.

  • PDF

An Engineering Method for Non-Linear Fracture Mechanics Analysis of Circumferential Through-Wall Cracked Pipes Under Internal Pressure (내압이 작용하는 원주방향 관통균열 배관의 비선형 파괴역학 해석법)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1099-1106
    • /
    • 2002
  • This paper provides engineering J-integral and crack opening displacement (COD) estimation equations for circumferential through-wall cracked pipes under internal pressure and under combined internal pressure and bending. Based on selected 3-D finite element calculations for the circumferential through-wall cracked pipes under internal pressure using the idealized power law materials, the elastic and plastic influence functions for fully plastic J-integral and COD solutions are found as a function of the normalized crack length and the mean radius-to-thickness ratio. These developed GE/EPRI-type solutions are then re-formulated based on the enhanced reference stress method. Such re-formulation not only provides simpler equations for J-integral and COD estimations, but also can be easily extended to combined internal pressure and bending. The proposed equations are compared with elastic-plastic finite element results using actual stress-strain data, which shows overall excellent agreement.

Microstructure and CTOD (crack tip opening displacement) of Deposit Weld Metal in 30 mm Thick Plate

  • Lee Hae-Woo;Kim Hyok-Ju;Park Jeong-Ung;Kang Chang-Yong;Sung Jang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.642-648
    • /
    • 2004
  • The microstructure and crack tip opening displacement (CTOD) of deposit weld metal were investigated for a 30 mm- thick plate welded with flux cored arc welding (FCAW) and submerged arc welding (SAW) processes. The CTOD test was carried out both as welded condition and as stress-relieved specimen by local compression. The crack growth rates in FCAW were faster than those in a SAW, and the acicular ferrite content by the SAW process was increased relatively more than that by the FCAW process. The fatigue crack growth rate in a welded specimen was faster than that in locally compressed specimen. The CTOD value of locally compressed specimens was lower than that of as welded specimen. Furthermore, the CTOD value tested with the SAW process was higher than that tested with the FCAW process.

Prediction of Elastic-Plastic Fracture Toughness for Metallic Material using Finite Element Method (유한요소법에 의한 금속재료의 탄소성파괴인성 예측)

  • Sun Dong-Ju;Park Myung-kyun;Bahk Sae-Man;Choi Young-Taek
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.95-100
    • /
    • 1997
  • In order to predict the elastic-plastic fracture toughness for metallic materials, Finite Element Method(FEM) was used for analysis of compact tension specimen. ASTM E399 test procedure was adopted for simulation of FEM. The Load-Crack Mouth Opening Displacement curve obtained from this analysis was used to detect the crack initiation point and determine the elastic-plastic fracture toughness $J_{IC}$. In order to prove the results, they were compared with the results from previous experiments and they agree with experimental results.

  • PDF

An Estimation of Constraint Factor on the ${\delta}_t$ Relationship (J-적분과 균열선단개구변위에 관한 구속계수 m의 평가)

  • 장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.24-33
    • /
    • 2000
  • This paper investigates the relationship between J-integral and crack tip opening displacement, ${\delta}_t$ using Gordens results of numerical analysis. Estimation were carried out for several strength levels such as ultimate, flow, yield, ultimate-flow, flow-yield stress to determine the influence of strain hardening and the ratio of crack length to width on the $J-{\delta}_t$ relationship. It was found that for SE(B) specimens, the $J-{\delta}_t$ relationship can be applied to relate J to ${\delta}_t$ as follows $J=m_j{\times}{\sigma}_i{\times}{\delta}_t$ where $m_j=1.27773+0.8307({\alpha}/W)$, ${\sigma}_i:{\sigma}_U$, ${\sigma}_{U-F}={\frac{1}{2}} ({\sigma}_U+{\sigma}_F$), ${\sigma}_F$, ${\sigma}_F}$ $Y=({\sigma}_F+{\sigma}_Y)$, ${\sigma}_Y$

  • PDF

Development of Elastic-Plastic Fracture Mechanics Evaluation Program for Leak-Before-Break Analysis of Nuclear Piping (원전 배관 파단전누설 평가를 위한 탄소성 파괴역학 평가 프로그램 개발)

  • Park, Jun-Geun;Huh, Nam-Su;Kim, Ye-Ji;Lee, Sang-Min
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • In this paper, a fracture mechanics evaluation system which can be used to assess the leak-before-break (LBB) of nuclear piping is developed. Existing solutions for calculating the fracture mechanics parameters (J-integral and crack opening displacement) required for LBB evaluation were firstly presented. Then a module for calculating J-integral and COD was developed, with an additional module for predicting the critical load based on the crack driving force diagram to finally develop a fracture mechanics evaluation system. To confirm the validity of the proposed evaluation system, finite element (FE) analysis was performed, and the FE J-integral and COD results were compared with prediction results using the J-integral and COD estimations program. Furthermore, the critical load assessment module was verified by comparing the actual pipe test results (Battelle test data) with prediction results using the proposed program.

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.