• Title/Summary/Keyword: Crack opening displacement

Search Result 226, Processing Time 0.033 seconds

A Study of Crack Growth Behavior of Al2024 (Al2024의 균열성장거동에 관한 연구)

  • Lee, Won-Seok;Lee, Hyun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2000
  • This study describes the fatigue characteristics for Al2024 alloy, which is aircraft structure material. For this work, the plane-strain fracture toughness test, the plane-stress fracture toughness test and the crack growth rates test were conducted under the standard testing method. Test equipment is a computer-controlled closed-loop fatigue testing machine. The data of each test result is very important to aircraft structure reliability estimation, life prediction, design analysis, endurance analysis and damage tolerance analysis. In addition, the fatigue crack growth threshold($\DeltaKth$) value decreased as the stress ratio increased. Also, $\DeltaKth$ decreased as the thickness increased in LT, TL directions.

  • PDF

Flow Characteristics of Gaseous Leak flows in Narrow Cracks

  • Hong, Chung-Pyo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2008
  • The prediction for gaseous leak flows through a narrow crack is important for a leak-before-break (LBB) analysis. Therefore, the methodology to obtain the flow characteristics of gaseous leak flow in a narrow crack for the wide range by using the product of friction factor and Reynolds number correlations (fRe) for a micro-channel is developed and presented. The correlation applied here was proposed by the previous study. The fourth-order Runge-Kutta method was employed to integrate the nonlinear ordinary differential equation for the pressure and the regular-Falsi method was also employed to find the inlet Mach number. A narrow crack whose opening displacement ranges from 10 to $100{\mu}m$ with a crack length in the range from 2 to 200mm was chosen for sample prediction. The present results are compared with both numerical simulation results and available experimental measurements. The results are in excellent agreement with them. The leak flow rate can be approximately predicted by using proposed methodology.

Measurements of Sub- and Super Harmonic Waves at the Interfaces of Fatigue-Cracked CT Specimen

  • Jeong, Hyun-Jo;Barnard, Dan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate ($LiNbO_3$) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonies in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

An Evaluation on the Fatigue Strength Characteristics for the Shot Peening Spring Steel at Low Temperature (숏피닝 가공재의 저온 피로 강도 평가)

  • 박경동;권오헌
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, CT specimens were prepared from spring steel(SPS5) processed shot peening. The fatigue crack growth tests were carried out in the environment of the room temperature md low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$ $-100^{\circ}C$ and $-150^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) were decreased in proportion to descend temperature. It was shown that the fatigue resistance characteristics and fracture strength at low temperature are considerable higher than those of mom temperature in the early stage and stable of fatigue crack growth region.

Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks (두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1521-1528
    • /
    • 2012
  • The present paper provides the elastic stress intensity factors (SIFs) and the crack opening displacements (CODs) of a thick-walled pipe with a slanted axial through-wall crack. For estimating these elastic fracture mechanics parameters, systematic three-dimensional elastic finite element (FE) analyses were performed by considering geometric variables, i.e., thickness of pipe, reference crack length, and crack length ratio, affecting the SIFs and CODs. As for loading condition, the internal pressure was considered. Based on the FE results, the SIFs and CODs of slanted axial through-wall cracks in a thickwalled pipe along the crack front and the wall thickness were calculated. In particular, to calculate the SIFs of a thick-walled pipe with a slanted axial through-wall crack from those of a thick-walled pipe with an idealized axial through-wall crack, a slant correction factor representing the effect of the slant crack on the SIFs was proposed.

Various Dynamic Behavior of Three Point Bend Specimens under Rapid Loading (빠른 하중을 받고 있는 3점 굽힘 시험편들의 다양한 동적거동)

  • Lee, Ouk-Sub;Cho, Jae-Ung;Han, Moon-sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.178-188
    • /
    • 1999
  • 충격하중을 받는 시험편 높이의 1/4 길이의 notch를 가진 3점 굽힘시험편들의 기계적 거동에 관한 컴퓨터 시뮬레이션을 하고 이 시뮬레이션에 대한 실험적 검증도 하여 그 타당성을 입증하였다. 시험편들의 양쪽 가장자리(지지점)에서 작용되어지는 여러 가지의 하중속도에 대한 경우들과 탄소성 von Mises 재질인 모델들을 시뮬레이션에 포함시켰으며 이들에 대한 결과들을 간극 개구 변위, 반력, 크랙선단 개구 변위 및 변형률등이 속도에 의존되는 재질(점소성 재질)에 대한 시뮬레이션 결과와 비교하였다. 또한 여러가지의 동적 하중을 받는 상황하에서의 안정성이 본 연구의 시뮬레이션을 통하여 비교되었으며 그 차이점들이 규명되었다.

  • PDF

The Measurement of the Crack in CCT Specimen Using the Image Processing Techniques (영상처리기법을 이용한 CCT 시편 균열의 자동관측법에 관한 연구)

  • Lee, Hyun-Woo;Mun, Gi-Tae;Oh, Se-Jong;Jeong, Byung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.528-533
    • /
    • 1997
  • In the analysis of fatigue crack propagation behavior, the crack length is one of the most important factors. In the test of crack propagation, compliance method is widely used to detect crack length. The measurement of surface crack length is not so easy with compliance method. In this study, the image processing technique was applied to measure the surface crack length. CCD(Charge-coupled device) camera was used to observe the crack image and the computer program to detect crack length from stored crack image was developed. CCT(Center Cracked Tension) specimen was used to compare the compliance method with the image processing technique. The crack length which detected by the image processing techniques was found to be well consistent with that from the optical measurement.

Evaluation on The Fracture Toughness of Chopped Strand Reinforced ALS Matrix Composites (촙트 스트랜드 강화 ALS계 복합재료의 파괴인성 평가)

  • 차용훈;김덕중;이연신;성백섭;채경수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • It is well known in the fracture mechanics community that the fracture toughness of brittle materials, such as ceramics, can be improved improves significantly when fibers are added into the material. This is because in presence of fibers the cracks cannot propagate as freely as it can in absence of them. Fibers bridge the gap between two adjacent surfaces of the crack and reduce the crack tip opening displacement, thus make it harder to propagate. Several investigators have experimentally studied how the length, diameter and volume fraction of fibers affect the fracture toughness of chopped strand reinforced matrix composite materials. In this paper, matrix used ALS, Arizona Lunar Simulant, types of fiber used carbon steels and stainless steels. To analyze quantitatively fiber reinforced ALS composites, experimental and analytical methods was progressed. Load-displacement curve is used to experimental method, and FEM analysis program using ABAQUS is used analytical method.

  • PDF

An Analysis for The Ductile Crack Growth (연성 균열성장의 해석)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.103-111
    • /
    • 1990
  • This paper presents a methodology for predicting stable crack growth and instability of a cracked body under monotonically increasing load. It is based on a model that incremental crack extensions and load increments after fracture initiation occur by turns in sequence and the criterion that the crack grows by an incremebt .delta.a when the opening displacement at the current crack tip increases by a critical value V$_{c}$. It is shown that the value I$_{c}$ = V$_{c}$/ .delta. a is a material constant characterizing ductile crack growth resistance. Along with the fracture initiation toughness value, the constant is used for the calculation of the loads against crack extensions by adding up each increment. The specimen failure is defined to occur when the necessary load increment for crack extension is zero or when the limit load in the current ligament is reached. The predicted failure loads are in good agreement with the avaliable experimental failure loads for the compact and center-cracked tension specimens of 7075-T651, 2024-T351 aluminum alloys and 304 stainless steel.steel.

Deformation Analysis of Composits-Patched Concrete Using Moire Interferometry (무아레 간섭계를 이용한 복합재 보강 콘크리트의 변형해석)

  • Ju, Jin-Won;Chae, Su-Eun;Sin, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.160-170
    • /
    • 2002
  • Many of aged and damaged concrete structure have been revitalized with composite reinforcement. Flexural behaviors of composite-patched concrete specimens are characterized by high-sensitivity moire interferometry. The three-mirror, four-beam interferometry system and a compact loading system are used for obtaining singe patterns representing whole-field contour maps of in-plane displacements. It is seen from the calibration test for the loading system that the measured bending displacement is in excellent agreement with the displacement calculated by the beam theory. The crack opening displacement as well as the bending and the horizontal displacement fur the notched and unnotched specimen are investigated. The results also show that the notched specimen reinforced by a composite sheet has sufficient stiffness and strength compared to the original concrete specimen.