• Title/Summary/Keyword: Crack occurrence

Search Result 235, Processing Time 0.025 seconds

Crack Monitoring of RC beam using Surface Conductive Crack Detection Patterns based on Parallel Resistance Network (병렬저항회로에 기반한 표면 전도성 균열감지패턴을 사용한 콘크리트 휨 부재의 균열 감지 )

  • Kyung-Joon Shin;Do-Keun Lee;Jae-Heon Hong;Dong-Chan Shin;Jong-Hyun Chae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.67-74
    • /
    • 2023
  • A large number of concrete structures are built and used around the world. To ensure their safe and continuous use, these structures require constant inspection and maintenance. While man-powered inspection and maintenance techniques are efficient, they can only provide intermittent status checks at the time of on-site inspection. Therefore, there is a growing need for a system that can continuously monitor the condition of the structure. A study was conducted to detect cracks and damage by installing a conductive coating on the surface of a concrete structure. A parallel resistance pattern that can monitor the occurrence and progression of cracks was developed by reflecting the structural characteristics of concrete structure. An empirical study was conducted to veryfy the application of the proposed method. The crack detection pattern was installed on the reinforced concrete beams, and the crack monitoring method was verified through applying a load on the beams.

Failure Mode Analysis and Friction Material Development of the KTX tread Brake (고속철도 제륜자 결함분석 및 제륜자 개발)

  • Baek, Jong-Kil;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • The shoe brake of the KTX is used in low speed when the electric brake is not effective. The main purpose of the shoe brake is to stop the train to a desired stop point at the station. Lots of defects have been encountered in the shoe brake unit since the KTX started its operation. To improve the reliability of shoe brake unit of the KTX power car, first of all, failure modes of the KTX shoe brake unit were analyzed. Main failure modes are cracks in the shoe friction material and fracture in the welded joints of the shoe backing steel structure. Several methods to remove the defects of the shoe brake unit were proposed and on-board tests were carried out: Increase of the strength of the shoe key and shoe cam, which decreased a little the occurrence of cracks in the shoe friction material; Redesign of the shoe backing steel structure, which eliminated the occurrence of the cracks in the backing plate but could not solve completely the crack problem in the shoe friction material; Development of a new friction material, which with redesign of the shoe backing steel structure could solve satisfactorily the crack problem in the shoe friction material.

Analytical Approach to Evaluate the Nonlinear Beahviors of One-way Concrete Slab Reinforced with CFRP Grid Reinforcements (CFRP 그리드 보강근을 적용한 1-방향 콘크리트 슬래브의 해석적 방법에 의한 비선형 거동 평가)

  • Cheon, Ju-Hyun;Kim, Kyung-Min;Shin, Hyun-Mock
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.218-225
    • /
    • 2021
  • The purpose of this study is to present a rational analytical method for predicting the behavioral characteristics from crack occurrence to fracture for a one-way CFRP grid reinforced concrete slab specimen. A total of four specimens were selected by Zhang et al.(2004) as the main experimental variables for CFRP grid amount, material properties and loading method. Analysis was performed through the Nonlinear Finite Element analysis program(RCAHEST), which applied the newly modified constitutive relational equations by the author. The mean and coefficient of variation for maximum moment from the experiment and analysis results was predicted 1.38 and 7 %. The mean and coefficient of variation for displacement corresponding maximum moment from the experiment and analysis results was predicted 1.41and 9.8 %. The prediction results for the behavioral characteristics from crack occurrence to fracture were verified and evaluated. It is judged that additional research is needed to secure various experimental results and to develop a more reliable analytical method.

Design Consideration about Large Caliber Piping of Polyethylene Material (폴리에틸렌 소재의 대구경 배관 설계 고찰)

  • Kim, Eung-Soo;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • As the polyethylene of high strength and ductility stabilized chemically has been mass-produced, it is spreading widely as material of industrial piping and water service piping. Recently, High density polyethylene (HDPE) pipe has been used even in water supply system of plant as buried pipe instead of cast iron pipe in domestic, but HDPE pipe has a probability of occurrence of damage if plant design and operating conditions are not considered. As a result of reviewing with respect of system design engineering based on operating conditions and verification test results, the specific design criteria for the use of HDPE piping in fire water supply system need to be established because of the possibility of crack damage due to water hammer.

Obtaining equivalent fracture toughness of concrete using uniaxial compression test

  • Li, Zongjin;Zhao, Yanhua
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.387-402
    • /
    • 2010
  • From typical stress-axial strain curve and stress-volume strain curve of a concrete under uniaxial compression, the initiation and localization of microcracks within the interior of the specimen can be identified. The occurrence of random microcrack indicates the end of the linear elasticity, and the localization of microcrack implies formation of major crack, which triggers the onset of unstable crack propagation. The interval between initiation and localization of microcracks is characterized by a stable microcrack growth. Based on fracture behavior observed from a uniaxial compressive test of a concrete cylinder, a model has been developed to extract fundamental fracture properties of a concrete, i.e. the equivalent fracture toughness and the size of fracture process zone. The introduction of cracking Poisson's ratio accounts for tensile failure characteristics of concrete even under uniaxal compression. To justify the validity of the model proposed, tests on three-point bending have been performed to obtain the fracture toughness in accordance with two parameter fracture model and double-K fracture model. Surprisingly, it yields favorably comparable results and provides an encouraging alternative approach to determine fracture properties for concretes.

Effect of (Ti-B) and Sr Additives on Impact and Fatigue Properties of Recycled AC4A Aluminum Casting Alloy (재활용 AC4A 알루미늄 합금의 충격 및 피로 특성에 미치는 (Ti-B), Sr 첨가제의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.39 no.4
    • /
    • pp.61-74
    • /
    • 2019
  • The effects of Sr and (Ti-B) additives on the impact and fatigue properties of recycled (35% scrap content) AC4A aluminum alloy are investigated here. The acicular morphology of the eutectic Si phase of as-cast specimens was converted to the fibrous one with Sr additives. The grain size of the α-solid solution decreased by the addition of (Ti-B) additives. The crack initiation energy (Ei) of the impact absorption energy decreased due to the incorporation of an oxide film and inclusions depending on the scrap used. The modification of the eutectic Si morphology by Sr additives is considered as the main factor of the increase of the average impact absorption energy (Et). The addition of (Ti-B) additives contributed to an increase in the occurrence of crack deflections due to the refining of α-Al grains, resulting in improved fatigue properties.

A critical steel yielding length model for predicting intermediate crack-induced debonding in FRP -strengthened RC members

  • Dai, Jian-Guo;Harries, Kent A.;Yokota, Hiroshi
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.457-473
    • /
    • 2008
  • Yielding of the internal steel reinforcement is an important mechanism that influences the Intermediate Crack-induced debonding (IC debonding) behavior in FRP-strengthened RC members since the FRP is required to carry additional forces beyond the condition of steel yielding. However, rational design practice dictates an appropriate limit state is defined when steel yielding is assured prior to FRP debonding. This paper proposes a criterion which correlates the occurrence of IC debonding to the formulation of a critical steel yielding length. Once this length is exceeded the average bond stress in the FRP/concrete interface exceeds its threshold value, which proves to correlate with the average bond resistance in an FRP/concrete joint under simple shear loading. This proposed IC debonding concept is based on traditional sections analysis which is conventionally applied in design practice. Hence complex bond stress-slip analyses are avoided. Furthermore, the proposed model incorporates not only the bond properties of FRP/concrete interface but also the beam geometry, and properties of steel and FRP reinforcement in the analysis of IC debonding strength. Based upon a solid database, the validity of the proposed simple IC debonding criterion is demonstrated.

Damage Detection and Suppression in Composites Using Smart Technologies

  • Takeda, Nobuo
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.26-36
    • /
    • 2001
  • Smart sensors and actuators have recently been developed. In this study, first, small-diameter fiber Bragg grating (FBG) sensors developed by the author, whose cladding and polyimide coating diameters were 40 and $52{\mu}m$, respectively, were embedded inside a laminate without resin-rich regions around sensors and the deterioration of mechanical properties of the composite laminate. The small-diameter FBG sensor was embedded in $0^{\circ}$ ply of a CFRP laminate for the detection of transverse cracks in $90^{\circ}$ ply of the laminate. The reflection spectra from the FBG sensor were measured at various tensile stresses. The spectrum became broad and had some peaks with an increase of the transverse crack density. Furthermore, the theoretical calculation reproduced the change in the spectrum very well. These results show that the small-diameter FBG sensors have a potential to detect the occurrence of transverse cracks through the change in the form of the spectrum, and to evaluate the transverse crack density quantitatively by the spectrum width. On the other hand, shape memory alloy (SMA) films were used to suppress the initiation and growth of transverse cracks in CFRP laminates. Pre-strained SMA films were embedded between laminas in CFRP laminates and then heated to introduce the recovery stress in SMA films and compressive stresses in the weakest plies ($90^{\circ}$ ply). The effects of recovery stresses are demonstrated in the experiments and well predicted using the shear-lag analysis and the nonlinear constitutive equation of SMA films.

  • PDF

Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Baek, Dae-Hyun;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and 15℃ even in case outside temperature drops -9℃ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than 4℃, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Analytical Study of Behavior on Structure Reinforced Fiber Sheet (섬유시트 보강 구조체의 거동에 관한 해석적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.2
    • /
    • pp.107-112
    • /
    • 2009
  • The effective reinforcement methods of structure is required to improve the durability of existing structures. Recently, the continuous fiber sheets to the concrete structures are widely used in the earthquake-proof reinforcement method. This study examines suitability and effect to concrete structure of fiber by FEM analysis. The result of analysis is as follows; All specimens occurred bending tensile failure at the middle span. Ultimate strength of specimen in the RC and reinforced RC specimen were 53.9 kN, 56.3 kN respectively and it was some low by degree 0.89, 0.82 to compare with calculated result. The deflection of specimen at the middle span occurred in approximately 0.2 mm, and did linear behavior in load 20 kN by seat reinforcement. Stiffness did not decrease by occurrence in the finer crack and reinforcement beam's flexure stiffness was increased until reach in failure. To compare calculated value and analysis value, it almost equal behavior in the elastic reign and can confirm effectiveness of analysis. Crack was distributed uniformly by reinforcement of fiber seat at failure and it do not occurred stiffness decreases.

  • PDF