• 제목/요약/키워드: Crack initiation models

검색결과 44건 처리시간 0.022초

Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Anjusha, K.V.;Gandhi, P.;Singh, P.K.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1588-1596
    • /
    • 2022
  • In the nuclear power plants, stainless steel is widely used for fabrication of various components such as piping and pipe fittings. These piping components are subjected to cyclic loading due to start up and shut down of the nuclear power plants. The application of cyclic loading may lead to initiation of crack at stress raiser locations such as nozzle to piping connection, crown of piping bends etc. of the piping system. Crack initiation can also take place from the flaws which have gone unnoticed during manufacturing. Therefore, prediction of crack initiation life would help in decision making with respect to plant operational life. The primary objective of the present study is to compile various analytical models to predict the crack initiation life of the pipes with notch. Here notch simulates the stress raisers in the piping system. As a part of the study, Coffin-Manson equations have been benchmarked to predict the crack initiation life of pipe with notch. Analytical models proposed by Zheng et al. [1], Singh et al. [2], Yang Dong et al. [25], Masayuki et al. [33] and Liu et al. [3] were compiled to predict the crack initiation life of SA312 Type 304LN stainless steel pipe with notch under fatigue loading. Tensile and low cycle fatigue properties were evaluated for the same lot of SA312 Type 304LN stainless steel as that of pipe test. The predicted crack initiation lives by different models were compared with the experimental results of three pipes under different frequencies and loading conditions. It was observed that the predicted crack initiation life is in very good agreement with experimental results with maximum difference of ±10.0%.

국부 변형률 근사를 이용한 원통형 노치시편의 피로균열 발생수명의 예측 (The Prediction of Fatigue Crack Initiation Life of Cylindrical Notch Specimens Using Local Strain Approximation)

  • 임재용;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.791-798
    • /
    • 2004
  • Fatigue crack initiation lives of round cylindrical notch specimen were investigated. Firstly, local strain approximation methods, such as the modified incremental Neuber's rule and the modified incremental Glinka's equivalent strain energy density(ESED) rule, were used to get multiaxial stress and strain state components at the notch tip. Based on the history of local stress and strain, multiaxial fatigue models were used to obtain fatigue crack initiation lives. Because the solution of Neuber's rule and Glinka's ESED rule make the upper and lower bound of local strain approximations, fatigue crack initiation lives are expected to place between life predictions by two local strain approximations. Experimental data were compared with the fatigue crack initiation life prediction results.

Applicability of Existing Fracture Initiation Models to Modern Line Pipe Steels

  • Shim, Do Jun
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.1-24
    • /
    • 2016
  • The original fracture criteria developed by Maxey/Kiefner for axial through-wall and surface-cracked pipes have worked well for many industries for a large variety of relatively low strength and toughness materials. However, newer line pipe steels have some unusual characteristics that differ from these older materials. One example is a test data that has demonstrated that X80 line-pipe with an axial through-wall-crack can fail at pressures about 30 percent lower than predicted with commonly used analysis methods for older steels. Thus, it is essential to review the currently available models and investigate the applicability of these models to newer high-strength line pipe materials. In this paper, the available models for predicting the failure behavior of axial-cracked pipes (through-wall-cracked and external surface-cracked pipes) were reviewed. Furthermore, the applicability of these models to high-strength steel pipes was investigated by analyzing limited full-scale pipe fracture initiation test results. Based on the analyzed results, the shortcomings of the available models were identified. For both through-wall and surface cracks, the major shortcomings were related to the characterization of the material toughness, which generally leads to non-conservative predictions in the J-T analyses. The findings in this paper may be limited to the test data that were consider for this study. The requisite characteristics of a potential model were also identified in the present paper.

굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측 (Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

고주기 피로 모델을 이용한 타원 접촉시 피로 수명에 관한 연구 (A Study on Fatigue Life under Elliptical Contact using High Cycle Fatigue Models)

  • 조용주;김태완;구영필
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.252-258
    • /
    • 2004
  • In this study, using high cycle fatigue (HCF) criteria, the simulation of rolling contact fatigue is conducted under elliptical contact. The HCF criteria fall into three categories: the critical plane approach, the stress invariant approach and the approach based on the mesoscopic scale. The accurate calculation of contact stresses and subsurface stresses is essential to the prediction of crack initiation life. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when the friction coefficient exceeds a specific value for all of three fatigue criteria.

Three-Dimensional Microstructural Modelling of Wear, Crack Initiation and Growth in Rail Steel

  • Fletcher, D.I.;Franklin, F.J.;Garnham, J.E.;Muyupa, E.;Papaelias, M.;Davis, C.L.;Kapoor, A.;Widiyarta, M.;Vasic, G.
    • International Journal of Railway
    • /
    • 제1권3호
    • /
    • pp.106-112
    • /
    • 2008
  • Rolling-sliding, cyclic contact of wheel and rail progressively alters the microstructure of the contacting steels, eventually leading to micro-scale crack initiation, wear and macro-scale crack growth in the railhead. Relating the microstructural changes to subsequent wear and cracking is being accomplished through modelling at three spatial scales: (i) bulk material (ii) multi-grain and (iii) sub-grain. The models incorporate detailed information from metallurgical examinations of used rails and tested rail material. The initial 2-dimensional models representing the rail material are being further developed into 3-dimensional models. Modelling is taking account of thermal effects, and traffic patterns to which the rails are exposed.

  • PDF

유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석 (Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete)

  • 백종은;유평준
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine

  • Zhu, Ying;Shuang, Miao
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.217-227
    • /
    • 2020
  • Based on translation models, both Gaussian and non-Gaussian wind fields are generated using spectral representation method for investigating the influence of non-Gaussian characteristics and directivity effect of wind load on fatigue damage of wind turbine. Using the blade aerodynamic model and multi-body dynamics, dynamic responses are calculated. Using linear damage accumulation theory and linear crack propagation theory, crack initiation life and crack propagation life are discussed with consideration of the joint probability density distribution of the wind direction and mean wind speed in detail. The result shows that non-Gaussian characteristics of wind load have less influence on fatigue life of wind turbine in the area with smaller annual mean wind speeds. Whereas, the influence becomes significant with the increase of the annual mean wind speed. When the annual mean wind speeds are 7 m/s and 9 m/s at hub height of 90 m, the crack initiation lives under softening non-Gaussian wind decrease by 10% compared with Gaussian wind fields or at higher hub height. The study indicates that the consideration of the influence of softening non-Gaussian characteristics of wind inflows can significantly decrease the fatigue life, and, if neglected, it can result in non-conservative fatigue life estimates for the areas with higher annual mean wind speeds.

부식을 고려한 콘크리트 교량의 최대 균열폭 제어 (Maximum Crack Width Control in Concrete Bridges Affected By Corrosion)

  • 조태준
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.114-121
    • /
    • 2006
  • As one of the serviceability limit states, the prediction and control of crack width in reinforced concrete bridges or PSC bridges are very important for the design of durable structures. However, the current bridge design specifications do not provide quantitative information for the prediction and control of crack width affected by the initiation and propagation of corrosion. Considering life span of concrete bridges, an improved control equation about the crack width affected by time-dependent general corrosion is proposed. The developed corrosion and crack width control models can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also help the rational criteria for the quantitative management and the prediction of remaining life of concrete structures.

PFM APPLICATION FOR THE PWSCC INTEGRITY OF Ni-BASE ALLOY WELDS-DEVELOPMENT AND APPLICATION OF PINEP-PWSCC

  • Hong, Jong-Dae;Jang, Changheui;Kim, Tae Soon
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.961-970
    • /
    • 2012
  • Often, probabilistic fracture mechanics (PFM) approaches have been adopted to quantify the failure probabilities of Ni-base alloy components, especially due to primary water stress corrosion cracking (PWSCC), in a primary piping system of pressurized water reactors. In this paper, the key features of an advanced PFM code, PINEP-PWSCC (Probabilistic INtegrity Evaluation for nuclear Piping-PWSCC) for such purpose, are described. In developing the code, we adopted most recent research results and advanced models in calculation modules such as PWSCC crack initiation and growth models, a performance-based probability of detection (POD) model for Ni-base alloy welds, and so on. To verify the code, the failure probabilities for various Alloy 182 welds locations were evaluated and compared with field experience and other PFM codes. Finally, the effects of pre-existing crack, weld repair, and POD models on failure probability were evaluated to demonstrate the applicability of PINEP-PWSCC.