• 제목/요약/키워드: Crack formation mechanism

검색결과 49건 처리시간 0.025초

On the origin of exponential growth in induced earthquakes in Groningen

  • van Putten, Maurice H.P.M.;van Putten, Anton F.P.;van Putten, Michael J.A.M.
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.861-871
    • /
    • 2016
  • The Groningen gas field shows exponential growth in earthquake event counts around a magnitude M1 with a doubling time of 6-9 years since 2001. This behavior is identified with dimensionless curvature in land subsidence, which has been evolving at a constant rate over the last few decades essentially uncorrelated to gas production. We demonstrate our mechanism by a tabletop crack formation experiment. The observed skewed distribution of event magnitudes is matched by that of maxima of event clusters with a normal distribution. It predicts about one event < M5 per day in 2025, pointing to increasing stress to human living conditions.

AUC 침전조건이 둥근 AUC 입자 제조에 미치는 영향 (A study on influence of precipitation condition on rounding of AUC particles)

  • 김응호;정원명;박진호;유재형;최청송
    • 한국결정성장학회지
    • /
    • 제8권3호
    • /
    • pp.454-462
    • /
    • 1998
  • AUC 침전과정중 AUC 입차를 둥글게 제조하는 조건과 기구를 조사하였다. 둥근 AUC 제조는 교반기를 이용한 내부순환 시는 불가능했으나 펌프를 사용한 외부순환 시는 가능했다. 둥근 AUC 제조속도($dn_p$/dt)는 침전조건인 슬러리 밀도($M_t:U/l)$, 슬러리 회전율($T_o$:turn-over ratio), 임펠러 속도(U:Impelle tip velocity)에 비례하여 관계식을 $ dn_p/dt{\propto}M_t{\cdot}T_o{\cdot}U^2$로 표기할 수 있었으며, 이 속도식은 실험결과와 정성적으로 일치하였다. 그리고 두 개의 둥근 AUC 제조 기구가 제시되었는데, 하나는 균일형성기구이고 다른 하나는 etch-pit 형성기구이다. 전자는 AUC 침전과정에서 초기에 발생되고 후자는 침전과정 말기에 발생되는 것으로 확인되었다.

  • PDF

Nb 첨가 오스테나이트계 스테인레스강의 연속주조시 표면크랙 형성기구 및 제어 (Formation Mechanism of Surface Crack and Its Control on Continuously Cast Slabs of Nb-containing Austenitic Stainless Steel)

  • 심상대;김선구
    • 한국주조공학회지
    • /
    • 제21권5호
    • /
    • pp.280-285
    • /
    • 2001
  • Nb-containing austenitic stainless steel is widely used as exhaust frame and diffuser assembly in power plant. However, this steel is known to be difficult to produce by the continuous casting process due to the surface cracks. Therefore, the continuous casting technology was developed for the prevention of the surface cracks on CC slabs. Precipitates and the analysis of heat trasfer in a slab were investigated in order to find out the formation mechanism of surface cracks on cc slabs It was found that surface cracks are occurred due to the NbC precipitates, which are formed along the grain boundaries around $800^{\circ}C$. The secondary cooling pattern has been developed to produce the defect free CC slabs of Nb-containing austenitic stainless steel.

  • PDF

인공추간판의 피로하중 모드에 따른 슬라이딩 코어의 피로균열전파 거동 (Fatigue Crack Propagation of Sliding Core in Artificial Intervertebral Disc due to the Fatigue Loading Mode)

  • 김철웅;강봉수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2006
  • Today, the Artificial Intervertebral Disc (AID) is being developed by increasing the oblique of the endplate gradually. In other words, Ultra-high Molecular Weight Polyethylene (UHMWPE) which is apply to the sliding core of the AID, does not change the shape but alters the oblique of endplate. However, the unreasonable increase of degree of freedom (DOF) can result in the aggravation of the bone fusion and the initial stability and it can also lead to the increase of the concentrated force in core. For these reasons, it is necessary to develop the advanced techniques, which choose the most adequate DOF. In this study, the new optimized modeling of the sliding core and the endplate, the fatigue characteristics, the crack propagation and the formation mechanism of wearing debris was studied and the minimizing technique will be derived from this research.

  • PDF

새로운 개념의 드릴에 의한 구멍가공시 버 형성에 관한 연구 (Analysis on Burr Formation in Drilling with New Concept Drill)

  • 고성림;전근배;이징구
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.114-121
    • /
    • 2000
  • A new concept drill was developed recently (or increasing accuracy and productivity in drilling operation. The burr formation in drilling causes many problems in deburring operation because burrs are formed inside holes and it is difficult to remove them. Burr formations are observed in drilling operation with a new concept drill and are compared with conventional HSS drill. Several workpieces with different materials are drilled with several cutting conditions, velocity and feed rate. The burr in drilling can be classified into three types according to the location of crack. To observe the burr formation mechanism, the cap which is formed with the new concept drill is observed and measured.

  • PDF

음향방출법을 이용한 글래스 복합재료의 파괴인성 및 미시파괴과정의 평가 (Evaluation of Fracture Toughness and the Micro-Fracture Mechanism of Porous Glass Composite by Using Acoustic Emission Technique)

  • 정희돈;권영각;장래웅
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1388-1398
    • /
    • 1994
  • The fracture toughness and micro-fracture mechanisms of the porous glass and stainless fiber reinforced glass composite were evaluated by using the acoustice mission(AE) technique, fracture toughness $test(K_{IC})$ and the macroscopic observation of the specimen surface which was being under the loading. At initial portion of the loading, the AE signals with low energy, of which origins were considered as the micro-cracks formated at the crack tip, were emitted. With increasing the applied load, AE signals having higher energies were generated due to the coalesence of micro-cracks and fast fracture. Based on the such relationship between AE emission and loading condition, fracture toughness $K_{IAE}$ could be defined successfully be using the $K_I$ value corresponding to an abrupt change of the accumulated AE signal energies emitted during the fracture toughness test. In spite of its brittleness of glass material, nonlinear deformation behavior before maximum load was observed due to the formation of micro-cracks. Further, the stainless fiber may have attributed to the improvement of fracture toughness and the resistance to crack propagation comparing to noncomposited materials Finally, models of the micro-fracture process combined with the AE sources for the porous glass material and its composite were proposed paying attention to the micro-crack nucleation and its coalescence at the crack tip. Fiber fracture and its Pullout, deformation of fiber itself were also delinated from the model.

Strain and crack development in continuous reinforced concrete slabs subjected to catenary action

  • Gouverneur, Dirk;Caspeele, Robby;Taerwe, Luc
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.173-188
    • /
    • 2015
  • Several structural calamities in the second half of the 20th century have shown that adequate collapse-resistance cannot be achieved by designing the individual elements of a structure without taking their interconnectivity into consideration. It has long been acknowledged that membrane behaviour of reinforced concrete structures can significantly increase the robustness of a structure and delay a complete collapse. An experimental large-scale test was conducted on a horizontally restrained, continuous reinforced concrete slab exposed to an artificial failure of the central support and subsequent loading until collapse of the specimen. Within this investigation the development of catenary action associated with the formation of large displacements was observed to increase the ultimate load capacity of the specimen significantly. The development of displacements, strains and horizontal forces within this investigation confirmed a load transfer process from an elastic bending mechanism to a tension controlled catenary mechanism. In this contribution a special focus is directed towards strain and crack development at critical sections. The results of this contribution are of particular importance when validating numerical models related to the development of catenary action in concrete slabs.

세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향- (Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation-)

  • 신형섭
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

SFRC의 인장 파괴거동에 대한 해석 (Analysis on the Tensile Fracture Behavior of SFRC)

  • 김규선;이차돈;심종성;최기봉;박제선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.65-72
    • /
    • 1993
  • Steel fiber reinforced concrete(SFRC) which is made by short, randomly distributed steel fibers in concrete is superior in its tensile mechanical properties to plain concrete in enhancement of tensile strength and tensile ductility. These improvements are attributed to crack arresting mechanism and formation of longer crack paths due to fibers , which as a consequence lead to increase in energy absorption capacity of SFRC. In the post-peak region under tensile stresses, major macrocrack forms at critical section. The opening of this macrocrack is mainly resisted by both of the fiber pull-out bridging the cracked surfaces and the resistance by matrix softening. In this study, micromechaincal approach has been made in order to simulate tensile behavior of SFRC and based on which the theoretical model is presented. This model reflects the features of both the composite material concept and the spacing concept in predicting tensile strength of SFRC. The model also takes into account for the effects of matrix tensile softening and fiber bridging by pull-out on the resistance for the post-peak behavior of SFRC. It has been shown that the developed model satisfactory predicts the experimental results.

  • PDF

스테인레스 강판의 응력부식균열 전파기구에 관한 연구 (A study on the mechanism of stress corrosion cracking of stainless steel)

  • 임우조;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.153-158
    • /
    • 1985
  • The dependence of the corrosion potential on the stress corrosion cracking of 304 austenitic stainless steel was inspected by using the specimen of constant displacement type under the environment of 42% $MgCl_2$ boiled solution. The relationship of the corrosion potential to the intermittent propagation behaviour in stress corrosion cracking was cleared. As the results, a possible model of stress corrosion cracking of 304 austenitic stainless steel in $MgCl_2$ boiled solution was presented on the basis of the Film Rupture Model. This model is specified by the following process. Rupturing of passive film at notch tip .rarw. Dissolution of metal ion and formation of tunnel .rarw. Initiation of microcrack .rarw. Propagation of main crack .rarw. Recreation of passive film at new crack surface.

  • PDF