• 제목/요약/키워드: Crack formation mechanism

검색결과 49건 처리시간 0.017초

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.213-213
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7NO1 spot-welded by pulse Nd: YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed: center line crack($C_{C}$), diagonal crack($C_{D}$), and U shape crack($C_{U}$). Also, HAZ crack($C_{H}$), was observed in the HAZ region, furthermore, mixing crack($C_{M}$), consisting of diagonal crack and HAZ crack was observed.White film was formed at the hot crack region in the fractured surface after it was immersed to 10%NaOH water. In the case of A5083 alloy, white films in C crack and $C_D crack region were composed of low melting phases, Fe₂Si$Al_8$ and eutectic phases, Mg₂Al₃ and Mg₂Si. Such films observed near HAZ crack were also consist of eutectic Mg₂Al₃. In the case of A7N01 alloy, eutectic phases of CuAl₂, $Mg_{32}$ (Al,Zn) ₃, MgZn₂, Al₂CuMg and Mg₂Si were observed in the whitely etched films near $C_{C}$ crack and $C_{D}$ crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Si in the case of A7N01 aooly, respectively.The $C_{D}$ and $C_{C}$ cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of $C_{M}$ crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The $C_{U}$ crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification. (Received October 7, 1999)

Experimental research on the evolution characteristics of displacement and stress in the formation of reverse faults

  • Chen, Shao J.;Xia, Zhi G.;Yin, Da W.;Du, Zhao W.
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.127-137
    • /
    • 2020
  • To study the reverse fault formation process and the stress evolution feature, a simulation test system of reverse fault formation is developed based on the analysis of reverse fault formation mechanism. The system mainly consists of simulation laboratory module, operation console and horizontal loading control system, and data monitoring system. It can represent the fault formation process, induce fault crack initiation and simulate faults of different throws. Simulation tests on reverse fault formation process are conducted by using the simulation test system: horizontal loading is added to one side of the model. the bottom rock layer cracks under the effect of the induction device. The crack dip angle is about 29°. A reverse fault is formed with the expansion of the crack dip angle towards the upper right along the fracture surface and the slippage of the hanging wall over the foot wall. Its formation process unfolds five stages: compressive deformation of rock, local crack initiation, reverse fault penetration, slippage of the hanging wall over the foot wall and compaction of fault plane. There is residual structural stress inside rock after fault formation. The study methods and results have guiding and referential significance for further study on reverse fault formation mechanism and rock stress evolution.

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

고탄소 연구강의 잠입귀열 방지에 관한 연구 (Study on Prevention of Quench Crack in Martensitic High Carbon Tool Steel)

  • 김학신;방성한;최종술;영형영
    • 한국표면공학회지
    • /
    • 제14권3호
    • /
    • pp.142-150
    • /
    • 1981
  • The present paper clarified mechanism of quench crack formation in high carbon steel dur-ing quenching, and, in order to prevent the quench crack, proposed two basic guides in alloy design of high carbon tool steel. They are to raise Ms temperature of high carbon tool steel by addition of alloying elemen-ts such as Al and Co, and to decrease grain size of the carbon tool steel by addition of alloying elements of Al, B, Ti, Zr, and V, and by grain-refining heat treatment.

  • PDF

Failure Mechanism of Cu/PET Flexible Composite Film with Anisotropic Interface Nanostructure

  • Park, Sang Jin;Han, Jun Hyun
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.105-110
    • /
    • 2020
  • Cu/PET composite films are widely used in a variety of wearable electronics. Lifetime of the electronics is determined by adhesion between the Cu film and the PET substrate. The formation of an anisotropic nanostructure on the PET surface by surface modification can enhance Cu/PET interfacial adhesion. The shape and size of the anisotropic nanostructures of the PET surface can be controlled by varying the surface modification conditions. In this work, the effect of Cu/PET interface nanostructures on the failure mechanism of a Cu/PET flexible composite film is studied. From observation of the morphologies of the anisotropic nanostructures on plasma-treated PET surfaces, and cross-sections and surfaces of the fractured specimens, the Cu/PET interface area and nanostructure width are analyzed and the failure mechanism of the Cu/PET film is investigated. It is found that the failure mechanism of the Cu/PET flexible composite film depends on the shape and size of the plasmatreated PET surface nanostructures. Cu/PET interface nanostructures with maximal peel strength exhibit multiple craze-crack propagation behavior, while smaller or larger interface nanostructures exhibit single-path craze-crack propagation behavior.

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향 (Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties)

  • 강석원;고재웅;김해두
    • 한국세라믹학회지
    • /
    • 제29권1호
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF

$Al_2O_3$-33Vol.% $SiC_w$의 고온피로에 미치는 피로하중주파수의 영향 (Fatigue Frequency Effect of High Temperature Fatigue Fracture Behavior of $Al_2O_3$-33Vol.% $SiC_w$)

  • 김송희
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.785-792
    • /
    • 1991
  • An investigation of the crack propagation behavior of Al2O3-33Vol.% SiCw at 140$0^{\circ}C$ was conducted with various loading frequencies. Higher crack propagation was observed in lower frequency and higher load ratios. Interface sliding fracture due to glassy phase from the oxidation of SiCw and cavitation along grain boundary of diffusional creep appeared to be the main mechanism of fatigue fracture in slower crack propagation while interface sliding and whisker pull out aided by glassy phase formation played main role of fatigue fracture for higher crack growth condition. The frequency effect on deformation behavior was discussed with a Maxwell model.

  • PDF