• Title/Summary/Keyword: Crack formation

Search Result 394, Processing Time 0.022 seconds

Effect of Isothermal Transformation Heat-treatment Time on Cold Workability of STS 430 Stainless Steel after High Temperature Gas Nitriding (고온 가스질화 된 STS 430 스테인리스강의 냉간 가공성에 미치는 항온변태 열처리 시간 변화의 영향)

  • Kim, J.M.;Hyun, Y.K.;Song, S.W.;Kim, G.D.;Son, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This study is to investigate the phase changes and cold workability after isothermal transformation at $780^{\circ}C$ by using the high temperature gas nitrided (HTGN) STS 430 ferritic stainless steel specimens. The phase diagram of STS 430 steel obtained by calculation showed that the phase appeared at $1100^{\circ}C$ showed as ${\alpha}+{\gamma}{\rightarrow}{\gamma}{\rightarrow}{\gamma}+Cr_2N{\rightarrow}{\gamma}+Cr_2N+CrN$ with increasing nitrogen concentration. Also, the transformation of ${\gamma}{\rightarrow}Cr_2N$ during heat treatment isothermally at $780^{\circ}C$, nitrogen pearlite with lamellar type was fully formed at the nitrogen permated surface layer for 10 hrs. However, this transformation was not completed for 1 hr, resulting nitrogen pearlite plus martensite. The cold rolled specimen of isothermally transformed at $780^{\circ}C$ for 10 hrs after high temperature gas nitriding decreased the layer thickness of nitrogen pearlite inducing the deformation of hard $Cr_2N$ phase. the dissolution rate of $Cr_2N$ phase increased rapidly with increasing cold rolling ratio. Specimens with the microstructure of nitrogen pearlite (isothermally transformed at $780^{\circ}C$ for 10 hrs) were possible to cold rolling without crack formation. However, the mixed structures of nitrogen pearlite + martensite (isothermally transformed at $780^{\circ}C$ for 1 hr) were impossible to cold deformation without cracking.

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

Crystallization Behavior and Electrical Properties of BNN Thin Films by IBSD Process

  • Lou, Jun-Hui;Jang, Jae-Hoon;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.960-964
    • /
    • 2004
  • [ $Ba_2NaNb_5O_{15}$ ](BNN) thin films have been prepared by the ion beam sputter deposition (IBSD) method on Pt coated Si substrate at temperature as low as $600^{\circ}C$ XRD, SEM were used to investigate the crystallization and microstructure of the films. It was found that the films were crack-free and uniform in microstructure. The electric properties of thin films were carried out by observation of D-E hysteresis loop, dielectric constant and leakage current. It was found the deposition rate strongly influenced the phase formation of the films, where the phase of $BaNb_2O_6$ was always formed when the deposition rate was high. However, the single phase (tungsten bronze structure ) BNN thin film was obtained with the deposition rate as low as $22{\AA}/min$. The remanent polarization Pr and dielectric constant are about 1-2 ${\mu}C/cm^2$ and $100\sim200$, respectively. It was also founded the electric properties of thin films were influenced by the deposition rate. The Pr and dielectric constant of films increased with the decrease of deposition rate. The effects of annealing temperature and annealing time to the crystallization behavior of films were studied. The crystallization of thin film started at about $600^{\circ}C$. The adequate crystallization was gotten at the temperature of $650^{\circ}C$ when the annealing time is 0.5 hour or at the temperature of $600^{\circ}C$ when the annealing time is long as 6 hours.

  • PDF

Flexural Behavior of Prestressed Dual Concrete Beams (프리스트레스트 이중 콘크리트 보의 휨 거동 해석)

  • Park Tae-Hyo;Yun Sung-Hwan;Yun Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.445-454
    • /
    • 2005
  • Cracks due to low tensile strength in prestressed concrete (PC) beams may decrease rigidity and structural performance, resulting in excessive deflection. In an effort to solve this problem, in this research, prestressed dual concrete (PDC) has been proposed, consisting of normal strength concrete in compression zone, and high performance steel fiber reinforced concrete(HPSFRC) with a partial depth in tensile zone. Three PDC beams with different depths of HPSFRC and two PC beams were cast for experiments. Analytical models at each stage, i.e., precracking, postcracking, and ultimate, were proposed for analysis of flexural behavior in PDC beams. The experimental results agree well to the analytical ones. Crack formation and its propagation are controlled by the HPSFRC in PDC beams. The initial cracking and service limit loads are increased along with the load carrying capacity and flexural stiffness.

Chloride Penetration Resistance and UV Properties in Coating Materials Containing Various Slime-Forming Bacteria (슬라임 생성 박테리아를 혼입한 코팅재의 염해 저항성 및 초음파 특성)

  • Kwon, Seung-Jun;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.395-402
    • /
    • 2017
  • Recently, many researches on crack healing and repairing technique using bacteria which can produce vital-reacted calcite have been proposed. This study is for a basic research on repair material with slime formation through bacteria and deals with durability evaluation for coating materials containing bacteria-forming slime. For the work, 4 types of bacteria (Rhodobacter capsulatus, Rhodopseudomonas palustris, Bacillus thuringiensis, and Bacillus subtilis) and 2 types of nutrient conditions are considered, and several tests covering strength evaluation under sulfate condition, accelerated chloride diffusion, and UV (Ultrasonic Velocity) measurement are performed. Strength improvement in coating materials containing bacteria is evaluated in spite of even exposure to sulfate attack to 7 days. Chloride diffusion coefficient and UV properties are also improved except for the case of Rhodopseudomonas palustris. With resistance of slime to long term exposure and aerobic conditions for bacteria longevity, the proposed bacteria shows an engineering feasibility for repair material of RC structure exposed harsh environment.

The Characteristics of Butt Welding Nd:YAG Laser with a Continuous Wave of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파 Nd:YAG 레이저 맞대기 용접 특성)

  • Mo, Yang-Woo;Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • S45C steel has been widely used in industrial applications, such as crank shafts, gears, main spindles of machine tools, connecting rods, etc., because of its distinguished mechanical property. In the convention arc welding of S45C plates without heat treatments, it is possible for welding defects to take place, such as a void or a hot-crack, due to a high carbon composition of S45C. Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, single-pass thick section capability, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as power of laser and welding speed, on the characteristics of laser welding for the case of nickel coated and nickel uncoated S45C steel. As the result of the experiment, in case of butt welding, nickel coated S45C steel has a uniform formation of welding zone and it was judged that the welding nature was better as inner defects and the quantity of spatter were formed relatively fewer than nickel uncoated S45C steel.

On the Mechanism of Smooth Blasting on the Rock Containing Discontinuties (불연속면이 존재하는 암반에서의 Smooth Blasting의 기구)

  • 박홍민;이상은
    • Explosives and Blasting
    • /
    • v.14 no.4
    • /
    • pp.13-19
    • /
    • 1996
  • Lately, the improtance of smooth blasting is increasing on every construction fields, suchas underground caves, tunnels, and roadconstruction, etc. The main purpose of smooth blasting is to prevent unnecessary cracks from the base rockwhich preserved permanently and is to gain the smooth fracture plane. So, in smooth blashing, explosives with low detonating velocity are generally used. But it is difficult to discuss general theory on the smooth blashing because the mechanical properties of pertienent rocks are difficult regionally. Accordingly basic reserches on the smooth blasting are demended. In this paper, the mechanisms of the smooth blasting on the rocks containing discontinuities were discussd. Firstly, the writer predicted the formation of fracture plane and unevenness using mathematical methodology, the next the model blast tests were conducted in order to simulate the crack propagation modes from the blast holes. Through the research, the following conclusions were obtained l)The blast test results were in reasonally good agreement with the theoretical prediction. 2)The degree of discontinuity has an influence on the fracture morphology.

  • PDF

Synthesis of Mullite Powder from Alkoxides and the Properties of the Mullite-Zircocnia Composites (알콕사이드로부터 Mullite 분말의 합성 및 Mullite-Zirconia 복합체의 특성)

  • 함종근;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.201-210
    • /
    • 1990
  • The mullite-15v/o ZrO2 composites were prepared by dispersing ZrO2-3m/o Y2O3 powders into the mullite matrix in order to improve the mechanical properties of the mullite. The densification and retention of t-ZrO2 in the matrix of synthetic mullite were also investigated. From IR spectroscopic analysis, the obtained amorphous SiO2-Al2O3 powder was observed to have Si-O-Al chemical bond in its structure which might result in the homogeneous mullite composition. The lattice parameter of the mullite powder calcined above 130$0^{\circ}C$ (a0=7.5468$\AA$) is nearly close to the value of stoichiometric mullite (71.8wt% Al2O3, a0=7.5456$\AA$). The sintering behavior, microstructure, flexural strength and fracture toughness of the mullite and mullite-15v/o ZrO2 composites have been studied. The mullite-15v/o ZrO2(+3m/o Y2O3) ceramics with relative densities of 96% were obtained when sintered at 1$600^{\circ}C$. The flexural strength and fractrue toughness of the composites sintered at 1$600^{\circ}C$(calcination temperature of mullite powders ; 125$0^{\circ}C$) had maximum values of 307MPa and 2.50MPa.m1/2, respectively. The fracture toughness improvement in the mullite-ZrO2 cmoposite is assumed to be resulted from the combined effect of the stress-induced phase transformation of tetragonal ZrO2 and the crack deflection due to microcracking by the monoclinic ZrO2 formation.

  • PDF

New processing technique of TFA-MOD YBCO coated conductors using the '211' process (211 공정을 이용한 새로운 TFA-MOD YBCO 박막 선재 제조)

  • Lim, Jun-Hyung;Jang, Seok-Hern;Kim, Kyu-Tae;Lee, Jin-Sung;Yoon, Kyung-Min;Park, Eui-Cheol;Joo, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.140-144
    • /
    • 2006
  • We fabricated the YBCO films on single crystal $LaAlO_3$ substrates via a metal organic deposition (MOD) process. In the process, $Y_2Ba_1Cu_1O_x$ and $Ba_3Cu_5O_8$ powders were dissolved in trifluoroacetic acid (TFA) followed by calcining and firing heat treatments. To evaluate the effects of the firing temperature on YBCO phase formation and critical properties, the films were fired at $750^{\circ}C,\;775^{\circ}C\;and\;800^{\circ}C$ after calcining at $430^{\cric}C$. Microstructure observation indicated that a crack-free surface formed and a strong biaxial texture was developed. The FWHM of out-of-plane texture was measured to be in the range of $4.3^{\cric}-7.0^{\circ}$ for all the films. When the YBCO film was fired at $775^{\cric}C$, it had the highest critical properties: 88.5 K of critical temperature and 16 A/cm-width of critical current ($1MA/cm^2$ as critical current density). On the other hand, those properties were degraded as firing at $750^{\circ}C\;and\;800^{\circ}C$. It is considered that the improved critical values are partly owing to dense and homogeneous microstructure, strong texture, and high oxygen content.

  • PDF

Low Temperature Hermetic Packaging using Localized Beating (부분 가열을 이용한 저온 Hermetic 패키징)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF