• 제목/요약/키워드: Crack controlling

검색결과 99건 처리시간 0.021초

발파에서 가이드공의 균열제어 유효성에 관한 실험적 연구 (A Study on the Effectiveness of a Guide Hole on Crack Growth Control in Blasting)

  • 이희광;김승곤;조상호
    • 터널과지하공간
    • /
    • 제20권2호
    • /
    • pp.125-130
    • /
    • 2010
  • 화약류를 이용한 발파에서 가이드공의 균열제어효과를 검토하기 위하여 모르타르 공시체를 이용한 발파실험을 수행하였다. 모르타르 블록의 중앙에 장약공을 설치하고 주변에 방사상으로 4종류의 가이드공을 각각 두 개씩 설치하였다. 4종류의 가이드공은 원형, 노치형, 다이아몬드형, 다이아몬드 홀더형이며, 장약공과 가이드공의 간격은 각각 110 mm, 165 mm, 220 mm으로 하여 3가지 형태의 모르타르 공시체를 제작하였다. 발파 실험 후 공시체에 대한 분석결과, 적용된 가이드공 모두 균열제어효과를 보였으며 같은 폭발압력에서는 노치 가이드 공이 보다 높은 균열제어효과를 나타내었다.

Comparison of macrosynthetic and steel FRC shear-critical beams with similar residual flexure tensile strengths

  • Ortiz-Navas, Francisco;Navarro-Gregori, Juan;Leiva, Gabriel;Serna, Pedro
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.491-503
    • /
    • 2020
  • This study extends previous experimental research on the shear behaviour of macrosynthetic fibre-reinforced concrete beams and compares them to steel fibre-reinforced concrete beams with similar mechanical and geometrical properties. This work employed two fibre types: 60/0.9 (long/diameter) double hooked-end steel fibre and 60/85 monofilament polypropylene fibre. Beams were tested by shear loading covering parameters, such as two different cross-section widths, two shear-span-to-effective-depth ratios, two fibre types and using repetitions with and without transverse reinforcement. For quantitative comparison purposes, crack pattern evolution was studied along increasing loads levels. Effects were studied by photogrammetry, including influence of fibres on crack propagation in uncracked and dowel zones, influence of fibres on stirrup behaviour, and shear deformation or kinematics of critical shear cracks. The results evidenced similar effectiveness for both fibre types in controlling shear crack propagation and horizontal dowel cracking. Both fibres provided similar shear ductility and shear deflections. Consequently, the authors confirm that residual flexural tensile strengths are a convenient parameter for characterising the shear behaviour of fibre-reinforced concrete beams.

분말 압출 공정에서 온도 유지시간 제어를 통한 미세기어의 내피로성 향상 연구 (Improvement of fatigue resistance of the miniature gear by controlling holding time of temperature in the hot powder extrusion process)

  • 김진우;이경훈;황대원;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.449-452
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 1.8 by hot extrusion process of mechanically alloyed Zn-22wt%Al powder at various temperature. The mechanical alloying was preformed for ball milled times of 8h, 16h and 32h by the planetary ball milling. Mechanically alloyed powders were compacted cylindrical performs. Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. The extruded spur gear was sintered for 2h at $350^{\circ}C$ in argon atmosphere. The friction between the die and the powdered billet and the internally different density due to complex product shape cause the internal crack. To overcome the mentioned problems, high dimensional accuracy at cross section of the spur gear and uniform Vickers hardness could be obtained by graphite lubricant and controlling holding time.

  • PDF

유한요소해석을 통한 섬유보강 아스팔트의 파괴거동특성 분석 (Finite Element Analysis for Fracture Resistance of Fiber-reinforced Asphalt Concrete)

  • 백종은;유평준
    • 한국도로학회논문집
    • /
    • 제17권3호
    • /
    • pp.77-83
    • /
    • 2015
  • PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions. METHODS : A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated. RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly. CONCLUSIONS : The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.

Review of design parameters for FRP-RC members detailed according to ACI 440.1R-06

  • Jnaid, Fares;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • 제11권2호
    • /
    • pp.105-121
    • /
    • 2013
  • This paper investigates the parameters that control the design of Fiber Reinforced Polymer (FRP) reinforced concrete flexural members proportioned following the ACI 440.1R-06. It investigates the critical parameters that control the flexural design, such as the deflection limits, crack limits, flexural capacity, concrete compressive strength, beam span and cross section, and bar diameter, at various Mean-Ambient Temperatures (MAT). The results of this research suggest that the deflection and cracking requirements are the two most controlling limits for FRP reinforced concrete flexural members.

SMA 복합재료 특성 실험 고찰 (Experimental Study of SMA Composite Characteristics)

  • 김형진;김재훈;강기원;정성균;박영철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.225-230
    • /
    • 2006
  • We have investigated mechanical behaviors of composite materials containing Ni-Ti shape memory alloy(SMA) wires by performing several experimental methods. In this study, several sample specimens were fabricated in order to perform photo-elasticity tests and impact tests under various test conditions for investigating the mechanical behaviors of the SMA composite materials. From the test results, the shape memory effect of SMA in composite materials can be considered as one of possible ways in controlling crack growth in the materials.

  • PDF

일체식 교대 교량의 대횡변위를 위한 교대와 H형 말뚝 연결부의 개발 (Development of Abutment-H pile Connection for Large Lateral Displacements of Integral Abutment Bridges)

  • 김우석;이재하;박대효
    • 한국전산구조공학회논문집
    • /
    • 제26권4호
    • /
    • pp.309-318
    • /
    • 2013
  • 본 논문에서는 일체식 교대 교량의 장대화 및 내진성능 향상을 위해 가장 중요한 역할을 하는 교대-H형 강말뚝 연결부의 성능을 향상시키기 위하여 기존의 연결부의 균열형상을 파악하고, 이를 기반으로 새로운 형태의 연결부를 제안하기 위하여 철근을 활용하여 강성을 증가시키는 방법과 강말뚝의 형상을 개선하여 연성을 개선시키는 방법을 모색하였다. 먼저, 기존 연결부의 성능을 향상시키기 위하여 연결부 주변에 PennDOT에 규정된 철근상세와 나선철근의 배치와 HSS 튜브를 사용하였으나, PennDOT의 철근 상세와 HSS 튜브는 연결부의 성능을 향상시키지 못 했으나, 나선철근은 균열을 효과적으로 차단시키는 것을 확인할 수 있었다. 하지만, 철근의 구속효과로 인해 강말뚝의 저항력이 변위에 선형적으로 비례하여 증가하므로 교량의 상부구조에 축력을 발생시키는 효과를 가져왔다. 따라서, 강말뚝의 형상을 개선하기 위하여 콘크리트 교대에 매입된 부분의 플랜지를 제거하는 방법과 콘크리트 외부에서 플랜지의 폭을 축소시키는 형태를 검토하였다. 두 가지 방안 모두 균열을 억제하는데 효과적인 방법이었으나, 플랜지를 제거하는 쪽의 연결부가 더욱 효과적이었다.

기계적 합금처리된 Mg-25wt.%Ni 혼합물의 수소화물 형성 및 분해에 대한 반응속도론적 연구 (A Study on the Hydriding and Dehydriding Kinetics of a Mechanically-Alloyed Mg-25wt.%Ni Mixture)

  • 송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제10권1호
    • /
    • pp.9-17
    • /
    • 1999
  • 기계적인 합금처리된 여러 Mg-Ni 혼합물 중에서 가장 우수한 수소저장 성질을 가지고 있는 Mg-25wt.%Ni 혼합물의 수소화물 형성 및 분해 반응에 대한 반응속도론적 연구를 하였다. 수소화물 형성 및 분해 속도를 측정하여 이론적인 반응 속도식과 비교함으로써 율속 단계를 결정하였다. Mg-25wt.%Ni의 수소화물 형성의 율속단계는 $H_a$ = 4.0 미만의 여러 $H_a$ 범위에서는 입자간 통로 (interparticle channel), 입자의 갈라진 틈(crack) 등을 통한 수소 분자의 이동 단계인 Knudsen 유동과 보통의 기체 확산이고, 4.0 < $H_a{\leq}4.25$ 범위에서는 성장하는 수소화물 층을 통한 수소 원자의 확산으로 생각된다. Mg-25wt.%Ni의 수소화물 분해의 율속 단계는 전 $H_d$ 범위에 걸쳐 수소 분자의 이동 단계인 Knusden 유동과 보통의 기체 확산이다.

  • PDF

STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향 (The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel)

  • 이현승;신형주;김송희
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

라텍스 혼입률에 따른 철근콘크리트의 휨파괴 거동특성 (Flexural Fracture Properties of Reinforced Concrete Beam with Latex Contents)

  • 정원경;김동호;이주형;임홍범;윤경구
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.177-184
    • /
    • 2002
  • Reinforced concrete(R/C) is commonly used to structures because they have many merits that compressive strength, economy and so on. However, reinforced concrete has a crack at the tensile section which is due to the relatively lower tensile strength than its compressive strength Latex modified concrete(LMC) has higher tensile and flexural strength than the ordinary portland cement, due to the interconnections of hydrated cement and aggregates by a film of latex particles. The purpose of this study was to investigate the flexural behavior of reinforced concrete beam with latex modified concrete, having the main experimental variables such as concrete types(ordinary portland cement concrete, latex modified concrete), latex contents(0%, 15%), flexural steel ratios(0.012, 0.0235), and with/without shear reinforcement. The beam of LMC showed considerably higher initial cracking loads and ductility than that of OPC, but, similar to ultimate strength and deflection. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation. The beam with latex modified concrete could be adopted at field for controlling and reducing the tensile crack due to its higher tensile strength.

  • PDF