• 제목/요약/키워드: Crack Tip Opening Displacement(CTOD)

검색결과 34건 처리시간 0.025초

일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정 (Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates)

  • 이계승;이억섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

실험적 변위측정위치에 따른 구속효과 A2의 거동 (Experimental Behaviors of Constraint Effect A2 depending on Opening Displacement Measurement near Crack Front for SS400.)

  • 한민수;장석기
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.345-350
    • /
    • 2008
  • The magnitude of constraint effect $A_2$ value was experimentally estimated by using crack tip opening displacement(CTOD) between elastic and plastic regions near crack tip front for CT specimen with $25.4t{\ss}{\AE}$ SS400 steel. The constraint effect, $A_2$ was dependent on specimen configuration and on the measured positions of CTOD near crack front. $A_2$ should be estimated using the opening displacement calculated within crack front plastic region. If not, it's not reliable to evaluate of constraint effect at crack growth initiation in this paper.

축방향 변위가 작용하는 가스 파이프라인 용접부에 존재하는 원주방향 외부표면균열의 변형률 기반 J-적분 및 CTOD 계산 (Estimations of Strain-Based J-integral and CTOD for Circumferential Outer Surface Crack in the Weld of Gas Pipeline Under Axial Displacement)

  • 김경민;박지수;문지희;장윤영;박승현;허남수
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.100-109
    • /
    • 2020
  • Pipelines subjected to ground movement would be easily exposed to large-scale deformation. Since such deformations may cause the pipeline failure, it is important to ensure the safety of pipelines in various operation conditions. However, crack in weld metal have been considered as one of the main causes that can deteriorate the structural integrity of the pipeline. For this reason, the structural integrity of the pipe containing the crack in the weld should be obtained. In order to assess cracked pipe, J-integral and crack-tip opening displacement(CTOD) have been applied widely as the elastic-plastic fracture mechanics parameters representing crack driving force. In this study, engineering solutions to calculate the J-integral and CTOD of pipes with a circumferential outer surface crack in the weld are proposed. For this purpose, 3-dimensional elastic-plastic finite element(FE) analyses have been performed considering the effect of overmatch and width of weld. The shape of the weld was simplified to I-groove, and axial displacement was employed as for loading condition. Based on FE results, the effects of crack size, material properties and width of weldment on J-integral and CTOD were investigated. Additionally, the J-integral and CTOD for I-groove were compared with those for V-groove to examine the effects of the weld shape, and a proportionality coefficient of J-integral and CTOD was calculated from the results of this paper.

Microstructure and CTOD (crack tip opening displacement) of Deposit Weld Metal in 30 mm Thick Plate

  • Lee Hae-Woo;Kim Hyok-Ju;Park Jeong-Ung;Kang Chang-Yong;Sung Jang-Hyun
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.642-648
    • /
    • 2004
  • The microstructure and crack tip opening displacement (CTOD) of deposit weld metal were investigated for a 30 mm- thick plate welded with flux cored arc welding (FCAW) and submerged arc welding (SAW) processes. The CTOD test was carried out both as welded condition and as stress-relieved specimen by local compression. The crack growth rates in FCAW were faster than those in a SAW, and the acicular ferrite content by the SAW process was increased relatively more than that by the FCAW process. The fatigue crack growth rate in a welded specimen was faster than that in locally compressed specimen. The CTOD value of locally compressed specimens was lower than that of as welded specimen. Furthermore, the CTOD value tested with the SAW process was higher than that tested with the FCAW process.

The effect of mechanical inhomogeneity in microzones of welded joints on CTOD fracture toughness of nuclear thick-walled steel

  • Long Tan;Songyang Li;Liangyin Zhao;Lulu Wang;Xiuxiu Zhao
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4112-4119
    • /
    • 2023
  • This study employs the microshear test method to examine the local mechanical properties of narrow-gap welded joints, revealing the mechanical inhomogeneity by evaluating the microshear strength, stress-strain curves, and failure strain. On this basis, the influence of weld joints micromechanical inhomogeneity on the crack tip opening displacement (CTOD) fracture toughness is investigated. From the root weld layer to the cover weld layer, the fracture toughness at the center of the weld seam demonstrates an increasing trend, with the experimental and calculated CTOD values showing a good correspondence. The microproperties of the welded joints significantly impact the load-bearing capacity and fracture toughness. During the deformation process of the "low-matching" microregions, the plastic zone expansion is hindered by the surrounding microregion strength constraints, thus reducing the fracture toughness. In contrast, during the deformation of the "high-matching" microregions, the surrounding microregions absorb some of the loading energy, partially releasing the concentrated stress at the crack tip, which in turn increases the fracture toughness.

균열선단 개구변위를 이용한 파괴인성 평가와 구속효과와의 관계 (The Relationship between Fracture Toughness and Constraint Effect using Crack Tip Opening Displacement)

  • 한민수;장석기;이돈출;김성종;박종식
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.91-92
    • /
    • 2006
  • For the CT specimen of 25.4mm thickness SS400 steel, the fracture toughness and the magnitude of constraint effect, $A_2$ on the non-linear elastoplastic fracture behaviors were experimentally estimated by crack tip opening displacement. In order to estimate constraint effect, displacement measurement position near crack front should be the existed within plastic region. But it is found that the displacement measurement positions by the ${\delta}_5$ method are in elastic region at crack growth initiation. Hence the estimate of constraint effect, $A_2$ by the ${\delta}_5$ method was not reliable.

  • PDF

입자강화 복합재료의 쐐기분열시험 및 파괴에너지 평가 (Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites)

  • 나성현;김재훈;최훈석;박재범;김신회;정규동
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.253-258
    • /
    • 2016
  • 입자강화복합재료를 이용하여 쐐기분열시험으로부터 얻은 파괴에너지, 균열진전 및 CTOD 에 대한 온도의 영향이 조사되었다. 이용된 재료는 고분자바인더, 산화제 및 알루미늄입자로 이루어져 있으며, 쐐기분열시편의 시험 속도는 50 mm/min 이고, 온도 조건은 $50^{\circ}C$, 상온, $-40^{\circ}C$, $-60^{\circ}C$이었다. 분열하중-CMOD 로부터 구한 파괴에너지는 $50^{\circ}C$에서 $-40^{\circ}C$까지 온도의 감소와 함께 증가한다. 또한 $-60^{\circ}C$에서 입자강화복합재료의 강도는 유리전이온도에 의해 급격히 증가하며 취성거동을 보였다. 그리고 디지털 이미지 상관법을 이용하여 균열 선단부근에 대한 변형률장이 분석되었다.

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

STUDY ON DYNAMIC BEHAVIOUR IN 3PB DUCTILE STEEL SPECIMEN APPLIED BY THE IMPACT LOAD

  • HAN M. S.;CHO J. U.;BERGMARK A.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.229-234
    • /
    • 2005
  • The dynamic crack growth in ductile steel is investigated by means of the impact loaded 3 point bending (3PB) specimens. Results from experiments and numerical simulations are compared to each other. A modified 3PB specimen designed with the reduced width at its ends has been developed in order to avoid the initial compressive loading of the crack tip and also to avoid the uncertain boundary conditions at the impact heads. Numerical simulations of the experiments are made by using a finite element method (FEM) code, ABAQUS. The high speed photography is used to obtain the crack growth and the data of the crack tip opening displacement (CTOD). The direct measurements of the relative rotations of two specimen halves are made by using the Moire interference pattern.