• Title/Summary/Keyword: Crack Surface

Search Result 1,994, Processing Time 0.027 seconds

Plastic Limit Pressure Solutions for Cracked Pipes Using 3-D Finite Element Method (3차원 유한요소해석을 통해 도출한 균열배관의 소성한계압력식)

  • Shim, Do-Jun;Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • Based on detailed FE limit analyses, the present paper provides tractable approximations fer plastic limit pressure solutions fur axially through-wall-cracked pipe; axially (inner) surface-cracked pipe; circumferentially through-wall-cracked pipe; and circumferentially (inner) surface-cracked pipe. In particular, for surface crack problems, the effect of the crack shape, the semi-elliptical shape or the rectangular shape, on the limit pressure is quantified. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach.

A Study on a Relationship Between the Surface Roughness of Fracture CT Specimen Broken by Fatigue Crack Growth and the Moments (피로균열성장에 의해 파단된 CT시험편의 표면조도와 모멘트의 관계에 관한 연구)

  • Kim, Kyun-Suk;Jung, Hyun-Chul;Kim, Kyung-Su;Park, Chan-Joo;Jang, Hos-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.462-468
    • /
    • 2010
  • Fatigue crack growth caused by surface defects is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LPG/LNG fuel tank and other various structures. So, this paper aims to investigate the relationship between the surface roughness of fracture CT specimens and the moments on the specimen when doing fatigue test for the evaluation and the assurance of safety of structures from fatigue crack deconstruction. In this experiment, the CT specimens were loaded by a fatigue testing machine with changing loads until they are broken. The surface roughness of the fracture CT specimens was measured using 3D precise shape measuring equipment and digital holography. As a result of this study, It was identified that the average roughnesses are similar at the positions that has a same moments by comparing the results with the moments on the specimen according to the position.

Fatigue Fracture Behavior of Spheroidal Graphite Cast Iron FCD500 by Super-Rapid induction Quenching (초급속열처리 구상흑연주철 FCD500의 피로파괴특성)

  • Ji, Jeong-Geun;Kim, Min-Geon;Kim, Jin-Hak;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.596-601
    • /
    • 2002
  • Rotary bending fatigue tests were carried out to investigate the fatigue characteristics of high performance ductile cast iron experienced super rapid induction treatment. The influence of super rapid induction treatment on fatigue limit was experimentally examined with the special focus on the variation of surface microstructure and the fatigue crack initiation and propagation through fractography. Main results obtained are as follows. By super rapid induction treatment in FCD500, the martensite structure obtained through conventional heat treatment was confirmed on the specimen surface. The fatigue crack initiation in the hardened surface layer was restricted by the martensite structure and compressive residual stress. Thus, it could be interpreted that the initiation stress would be increased by improved structure in the surface. The fatigue crack propagation in the hardened layer was retarded by the presence of the globular shape martensite around the graphite nodule and compressive residual stress and the crack propagation behavior has zigzag pattern in the hardened surface layer.

Peculiar Fatigue Fracture Behavior of Ultrasonic Nanocrystal Surface Modified SCM435 (초음파 나노 결정 표면개질된 SCM435의 특이한 피로 파괴 특성)

  • Kim, Jae-Hoon;Yun, Seo-Hyun;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.239-245
    • /
    • 2022
  • Using the fatigue limit (∆σunsm) and residual stress (σr) of the UNSM smooth specimen, the harmless maximum crack depth (ahlm) according to the crack aspect ratio (As) was evaluated. In addition, the relationship between the minimum crack depth (aNDI1, aNDI2) detectable by non-destructive inspection(NDI), the crack depth (a25, a50) that reduces the fatigue limit by 25% and 50%, and ahlm were evaluated. The harmless crack condition was determined by the deepest crack point (point A). Since ahlm is larger than a25 and a50, a25 and a50 can secure the safety and reliability of steel via UNSM. Because aNDI1 and aNDI2 are larger than a25 and a50, cracks in a25 and a50 cannot be detected by non-destructive testing. Therefore it is necessary to apply more precise NDI.

Finite Element Analysis of Subsurface Crack Propagation in Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시의 반무한체 내의 수평균열 전파해석)

  • 이상윤;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.297-302
    • /
    • 1999
  • Finite element analysis is peformed about the crack propagation in half-space due to sliding contact. The analysis is based on linear elastic fracture mechanics and stress intensity factor concept. The crack location is fixed and the friction coefficient between asperity and half-space is varied to analyze the effect of surface friction on stress Intensity factor for horizontal crack. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factor.

  • PDF

A Numeric Modelling Technique for the Shape Development of Fatigue Crack (피로 균열 형상 진전의 수치 모델링 기법에 관한 연구)

  • Han, Moon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.225-233
    • /
    • 1999
  • This paper describes a versatile finite element technique which has been used to investigate of wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems analyzed to date include the surface cracks in leak-before-break situations, the development of quarter-elliptical corner defects, planar semi-elliptical surface defects and the fatigue growth of defects.

  • PDF

Crack Analysis of Concrete Gravity Dam subjected to Uplift Pressure using Surface Integral Method (표면적분법을 이용한 양압력이 작용하는 중력식 콘코리트 댐의 균열해석)

  • 진치섭;이영호;엄장섭;김태완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.267-272
    • /
    • 2000
  • The modeling on uplift pressure on the foundation of a dam on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams. The evaluation of stress intensity factor at the crack tip of concrete gravity dam due to uplift pressure effect by surface integral method is performed in this study. The effects of body force, overtopping pressure and water pressure on the crack-face are also considered in this study.

  • PDF

Study on Prevention of Quench Crack in Martensitic High Carbon Tool Steel (고탄소 연구강의 잠입귀열 방지에 관한 연구)

  • 김학신;방성한;최종술;영형영
    • Journal of the Korean institute of surface engineering
    • /
    • v.14 no.3
    • /
    • pp.142-150
    • /
    • 1981
  • The present paper clarified mechanism of quench crack formation in high carbon steel dur-ing quenching, and, in order to prevent the quench crack, proposed two basic guides in alloy design of high carbon tool steel. They are to raise Ms temperature of high carbon tool steel by addition of alloying elemen-ts such as Al and Co, and to decrease grain size of the carbon tool steel by addition of alloying elements of Al, B, Ti, Zr, and V, and by grain-refining heat treatment.

  • PDF

Microstructurally sensitive crack closure (微視組織에 敏感한 균열닫힘 현상)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.898-905
    • /
    • 1986
  • In order to obtain the microstructure improving fatigue crack propagation resistance of steels, fatigue crack propagation behavior of martensite-ferrite dual phase steels is investigated in terms of crack deflection and crack closure. The results obtained are as follows; (1) .DELTA.K$_{th}$ and fatigue crack propagation resistance in low .DELTA.K region increases with increasing hardness of second phase. But the difference of this crack propagation resistance decreases with increasing .DELTA.D. (2) In low .DELTA.K region, crack closure increases with increasing hardness of second phase, when the materials have all the sam volume fractionof second phase, or when yield strengths are similar in all materials. (3) These crack closure can be explained by fracture surface roughness due to crack deflection.n.

Evaluation of Surface-Breaking Crack Based on Laser-Generated Ultrasonics and Wavelet Transform (레이저 초음파와 Wavelet변환을 이용한 재료표면균열 평가)

  • Lee, Min-Rae;Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.152-162
    • /
    • 2001
  • Laser-generated ultrasonic technique which is one of the reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal obtained from surface crack. Therefore, the signal analysis of the laser-generated ultrasonics is absolutely necessary for the accurate and quantitative estimation of the surface defects. In this study, one-sided measurement by laser-generated ultrasonic has been applied to evaluate the depth of the surface-breaking crack in the materials. However, since the ultrasonic waveform excited by pulse laser is very difficult to distinguish the defect signals, it is necessary to consider the signal analyses of the transient waveform. Wavelet Transform(WT) is a powerful tool for processing transient signals with temporally varying spectra that helps to resolve high and low frequency transient components effectively. In this paper, the analyses of the surface-breaking crack of the ultrasonic signal excited by pulse laser are presented by employing the WT analyses.

  • PDF