• Title/Summary/Keyword: Crack Opening

Search Result 453, Processing Time 0.02 seconds

Ultimate torsional strength of cracked stiffened box girders with a large deck opening

  • Ao, Lei;Wang, De-Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.360-374
    • /
    • 2016
  • The present paper studies the ultimate torsional strength of stiffened box girders with large deck opening due to the influence of cracks. Three types of hull girders with different spans are provided for comparison. Potential parameters which may have effects on the torsional strength including the mesh refinement, initial deflection, material strain hardening, geometric properties of crack and stiffener are discussed. Two new concepts that play an significant role in the ultimate strength research of damaged box girders are introduced, one of which is the effective residual section (ERS), the other is the initial damage of the failure zone (IDFZ) for intact structures. New simple formulas for predicting the residual ultimate torsional strength of cracked stiffened box girders are derived on the basis of the two new concepts.

Numerical simulation of wedge splitting test method for evaluating fracture behaviour of self compacting concrete

  • Raja Rajeshwari B.;Sivakumar, M.V.N.;Sai Asrith P.
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.265-273
    • /
    • 2024
  • Predicting fracture properties requires an understanding of structural failure behaviour in relation to specimen type, dimension, and notch length. Facture properties are evaluated using various testing methods, wedge splitting test being one of them. The wedge splitting test was numerically modelled three dimensionally using the finite element method on self compacting concrete specimens with varied specimen and notch depths in the current work. The load - Crack mouth opening displacement curves and the angle of rotation with respect to notch opening till failure are used to assess the fracture properties. Furthermore, based on the simulation results, failure curve was built to forecast the fracture behaviour of self-compacting concrete. The fracture failure curve revealed that the failure was quasi-brittle in character, conforming to non-linear elastic properties for all specimen depth and notch depth combinations.

Evaluation of Fracture Toughness of Copper Thin Films by Combining Numerical Analyses and Experimental Tests (해석과 실험을 결합한 구리 박막의 파괴인성 평가)

  • Kim, Hyun-Gyu;Oh, Se-Young;Kim, Kwang-Soo;Lee, Haeng-Soo;Kim, Seong-Woong;Kim, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.233-239
    • /
    • 2013
  • In this paper, a method of combining numerical analyses and experimental tests is used to evaluate fracture toughness of copper thin films of $15{\mu}m$ thickness. Far-field loadings of a global-local finite element model are inversely estimated by matching crack opening profiles in experiments with numerical results. The fracture toughness is then evaluated using the J-integral for cracks in thin films under far-field loadings. In experiments, Cu thin films attached to Aluminum sheets are loaded indirectly, and crack opening profiles are observed by microscope camera. Stress versus strain curves of Cu thin films are obtained through micro-tensile tests, and the grain size of Cu thin films is observed by TEM analysis. The results show that the fracture toughness of Cu thin films with $500nm{\sim}1{\mu}m$ sized grains is $6,962J/m^2$.

Effects of Tensile Reinforcement of Steel Fibers in SFRC (강섬유보강콘크리트내 강섬유의 인장보강효과)

  • 김규선;이차돈;박제선;심종성;최기봉
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.76-81
    • /
    • 1992
  • Short, randomly disturbed steel fibers in concrete increase tensile strength and ductility of concrete under direct tension. These improvements are results form crack arrest mechanisms of steel fibers in concrete. These mechanisms are theoretically considered in this study and verification on the adequancy of different spacing for predicting tensile strength of SFRC are assessed. Results indicate that better correlation exists between experimental result and the spacing concept which take into account the effect of boundaries as well as vibration on reorientation of steel fibers inside concrete. Also considered is the modeling of stress-crack opening relationships in post-peak region of SFRC under tension which bass its deviation on micromechanics of fiber pull-out. Satisfactoring results are observed between tests results and the prediction of the model.

  • PDF

Analysis on the Tensile Fracture Behavior of SFRC (SFRC의 인장 파괴거동에 대한 해석)

  • 김규선;이차돈;심종성;최기봉;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.65-72
    • /
    • 1993
  • Steel fiber reinforced concrete(SFRC) which is made by short, randomly distributed steel fibers in concrete is superior in its tensile mechanical properties to plain concrete in enhancement of tensile strength and tensile ductility. These improvements are attributed to crack arresting mechanism and formation of longer crack paths due to fibers , which as a consequence lead to increase in energy absorption capacity of SFRC. In the post-peak region under tensile stresses, major macrocrack forms at critical section. The opening of this macrocrack is mainly resisted by both of the fiber pull-out bridging the cracked surfaces and the resistance by matrix softening. In this study, micromechaincal approach has been made in order to simulate tensile behavior of SFRC and based on which the theoretical model is presented. This model reflects the features of both the composite material concept and the spacing concept in predicting tensile strength of SFRC. The model also takes into account for the effects of matrix tensile softening and fiber bridging by pull-out on the resistance for the post-peak behavior of SFRC. It has been shown that the developed model satisfactory predicts the experimental results.

  • PDF

J and CTOD Estimation for Homogeneous and Bi-Material Fracture Toughness Testing Specimens

  • Lee, Hyungyil;Kim, Yun-Jae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1079-1089
    • /
    • 2001
  • This paper proposes J and CTOD estimation schemes applied to fracture toughness testing, covering typical homogeneous and bi-material specimens. Recommendations are based on the plastic limit analysis (either slip line field or finite element limit analyses), assuming the rigid plastic material behavior. The main outcome of the present study is that the J and CTOD estimation schemes (both codified and non-codified), recommended for homogeneous specimens, can be equally used for bi-material specimens with interface cracks. The effect of yield strength mismatch in bi-material specimens on the J-integral CTOD is discussed.

  • PDF

Evaluation on The Fracture Toughness of Chopped Strand Reinforced ALS Matrix Composites (촙트 스트랜드 강화 ALS계 복합재료의 파괴인성 평가)

  • 차용훈;김덕중;이연신;성백섭;채경수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • It is well known in the fracture mechanics community that the fracture toughness of brittle materials, such as ceramics, can be improved improves significantly when fibers are added into the material. This is because in presence of fibers the cracks cannot propagate as freely as it can in absence of them. Fibers bridge the gap between two adjacent surfaces of the crack and reduce the crack tip opening displacement, thus make it harder to propagate. Several investigators have experimentally studied how the length, diameter and volume fraction of fibers affect the fracture toughness of chopped strand reinforced matrix composite materials. In this paper, matrix used ALS, Arizona Lunar Simulant, types of fiber used carbon steels and stainless steels. To analyze quantitatively fiber reinforced ALS composites, experimental and analytical methods was progressed. Load-displacement curve is used to experimental method, and FEM analysis program using ABAQUS is used analytical method.

  • PDF

The Effects of cathodic protection on fracture toughness of buried gas pipeline (매설가스배관의 음극방식이 배관의 파괴인성에 미치는 영향)

  • Kim, Cheol-Man;Kim, Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.573-578
    • /
    • 2001
  • For the corrosion protect ion of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD test ing with varying test conditions, such as the potential and current density. The CTOD of the base steel and weld metal showed a strong dependence of the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Hydrogen introduced fractures, caused by cathodic overprotection.

  • PDF

Numerical simulation of fracture and damage behaviour of concrete at different ages

  • Jin, Nanguo;Tian, Ye;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.221-241
    • /
    • 2007
  • Based on the experiment results, the damage and fracture behavior of concrete at the ages of 1d, 2d, 7d and 28d, in three-point bending and uniaxial tensile tests, were simulated with a finite element program, ABAQUS. The critical stress intensity factor $K_{IC}^s$ and the critical crack tip opening displacement ($CTOD_C$) of concrete were calculated with effective-elastic crack approach for the three-point bending test of grade C30 concrete. Based on the crack band model, a bilinear strain-softening curve was derived to simulate the LOAD-CMOD curves and LOAD-Displacement curves. In numerical analysis of the uniaxial tension test of concrete of grade C40, the damage and fracture mechanics were combined. The smeared cracking model coupling with damaged variable was adopted to evaluate the onset and development of microcracking of uniaxial tensile specimen. The uniaxial tension test was simulated by invoking the damage plastic model which took both damage and plasticity as inner variables with user subroutines. All the numerical simulated results show good agreement with the experimental results.

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.