• Title/Summary/Keyword: Crack Nucleation

Search Result 44, Processing Time 0.03 seconds

A study of fracture of a fibrous composite

  • Mirsalimov, Vagif M.;Hasanov, Shahin H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.585-598
    • /
    • 2020
  • We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which crack nucleation and crack growth occurs.

The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.546-553
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Cohesive modeling of dynamic fracture in reinforced concrete

  • Yu, Rena C.;Zhang, Xiaoxin;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.389-400
    • /
    • 2008
  • In this work we simulate explicitly the dynamic fracture propagation in reinforced concrete beams. In particular, adopting cohesive theories of fracture with the direct simulation of fracture and fragmentation, we represent the concrete matrix, the steel re-bars and the interface between the two materials explicitly. Therefore the crack nucleation within the concrete matrix, through and along the re-bars, the deterioration of the concrete-steel interface are modeled explicitly. The numerical simulations are validated against experiments of three-point-bend beams loaded dynamically under various strain rates. By extracting the crack-tip positions and the crack mouth opening displacement history, a two-stage crack propagation, marked by the attainment of the peak load, is observed. The first stage corresponds to the stable crack advance, the second one, the unstable collapse of the beam.

A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing (초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구)

  • Hwang, Woong-Gi;Lee, Kyung-Min;Woo, Young-Kwan;Seo, Duck-Hee;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF

Prediction of Stress-Strain Relation and Evolution of Compliance of Concrete by a Micromechanical Model (미세역학이론에 의한 콘크리트의 응력-변형도 관계와 연성도의 예측에 관한 연구)

  • 김진구
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • In this study a model for the constitutive relation of a plane concrete is proposed using a micromechariical model. In this model a precursor crack is assumed to exist in the aggregate-cement paste interface, and the LEFM is used to predict the nucleation of the bond cracks and the grow th of mortar cracks. For computational convenience the bond crack-mortar crack configuration is transformed into a straight crack with a point force in the middle. 'The overall compliance and the cons,titutive relation are predicted from the damage due to microcracks, and the predicted stress-strain curves are compared with some experimental data. According to the results, the model predictions are better for under tensile loading than under compression, for high, strength concrete than for normal strength concrete.

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

Experimental Study on Fatigue Crack Initiation and Propagation due to Fretting Damage in Press-fitted Shaft (압입축에 발생하는 프레팅 피로균열 발생 및 진전 특성 실험)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.701-709
    • /
    • 2007
  • To clarify the characteristics of surface damage due to fretting in press-fitted shaft, experimental methods were applied to small scale specimen with different bending load condition. Fatigue tests and interrupted fatigue tests of press-fitted specimen were carried out by rotate bending fatigue test. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that small fatigue cracks are nucleated early in life regardless of bending stress, and thus the most portion of fatigue life on press fits can be considered to be crack propagation process. Most of surface cracks are initiated near the contact edge, and multiple cracks are nucleated and interconnected. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. It is thus suggested that the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in press fits.

A Parametric Study for a Composite Constitutive Model Considering weakened Interfaces and Microcracks (계면손상과 미세균열을 고려한 복합재료 구성모델의 파라미터에 관한 연구)

  • Lee, Haeng-Ki;Pyo, Suk-Hoon;Kim, Hyeong-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.56-59
    • /
    • 2008
  • This paper presents results of a parametric study for a constitutive model (Lee et ai, 1989) for particle-reinforced composites considering weakened interfaces and crack nucleation. Eshelby's tensors for particles with imperfect interfaces (Ju and Chen, 1994) and microcracks (Sun and Ju, 2004) are incorporated into a micromechanical formulation. A parametric study for the microcrack nucleation parameter ${\phi}_{{\upsilon}0}$ and ${\epsilon}^{th}$ is conducted to investigate the sensitivity of the parameter to the constitutive model.

  • PDF

A Study on the Nucleation of Fretting Fatigue Cracks at the Heterogeneity Material (이종재료에서 프레팅 피로 균열의 생성에 관한 연구)

  • Goh Jun Bin;Goh Chung Hyun;Lee Kee Seok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-109
    • /
    • 2005
  • Since fretting fatigue damage accumulation occurs over relatively small volumes, the role of the microstructure is quite significant in fretting fatigue analysis. The heterogeneity of discrete grains and their crystallographic orientation can be accounted for using continuum crystallographic cyclic plasticity models. Such a constitutive law used in parametric studies of contact conditions may ultimately result in more thorough understanding of realistic fretting fatigue processes. The primary focus of this study is to explore the influence of microstructure as well as the magnitude of the normal force and tangential force amplitude during the fretting fatigue process. Fretting maps representing cyclic plastic strain behaviors are also developed to shed light on the cyclic deformation mechanisms.

effect of Heating Rate on the Mechanical Properties in the Crystallization of $Li_2O$.$2SiO_2$ Glass ($Li_2O$.$2SiO_2$유리의 결정화에서 승온속도가 기계적 특성에 미치는 영향)

  • 최병현;고경현;안재환;지응업
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.809-815
    • /
    • 1996
  • When Li2O.2SiO2 glass was crystallized between the temperature of maximum nucleation and the temperature of maximum crystal growth it was found that the control of heating rate had serious effect on the crystallinity and microstructure and the greatly changed physical properties. Density and elastic modulus tends to increase but thermal expansion coefficient decreased with increased crystallinity. When heating rate between the tempe-rature of maximum nucleation and the temperature of maximum crystal growth was 10~5$0^{\circ}C$/hr. crystallinity was increased to result in the increment of strength. When nuclation was done at 44$0^{\circ}C$ for 5 hours and the temperature of crystal growth was held at 575$^{\circ}C$ strength was increased until crystallinity reached 65% and strength was decreased with higher crystallinity. These phenomena could be explained that even for the same crystallinity different heat rates resulted in different number and size of cracks.

  • PDF