• 제목/요약/키워드: Crack Measurement Method

Search Result 228, Processing Time 0.03 seconds

A Study on the Detection of Interfacial Defect to Boundary Surface in Semiconductor Package by Ultrasonic Signal Processing (초음파 신호처리에 의한 반도체 패키지의 접합경계면 결함 검출에 관한 연구)

  • Kim, Jae-Yeol;Hong, Won;Han, Jae-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.369-377
    • /
    • 1999
  • Recently, it is gradually raised necessity that thickness of thin film is measured accuracy and managed in industrial circles and medical world. Ultrasonic signal processing method is likely to become a very powerful method for NDE method of detection of microdefects and thickness measurement of thin film below the limit of ultrasonic distance resolution in the opaque materials, provides useful information that cannot be obtained by a conventional measuring system. In the present research. considering a thin film below the limit of ultrasonic distance resolution sandwiched between three substances as acoustical analysis model, demonstrated the usefulness of ultrasonic signal processing technique using information of ultrasonic frequency for NDE of measurements of thin film thickness. Accordingly, for the detection of delamination between the junction condition of boundary microdefect of thin film sandwiched between three substances the results from digital image processing.

  • PDF

A Study on the Effect of Temperature on the Elastic-Plastic Fracture Toughness $J_{IC}$ of Materials (I) - A Comparative Study of $J_{IC}$ Test Methods Recommended by ASTM and JSME - (재료의 탄소성 파괴인성치 $J_{IC}$의 온도 의존성에 관한 연구 I - AST과 JSME의 $J_{IC}$ 시험법에 관한 비교연구 -)

  • 석창성;최용식;양원호;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.653-659
    • /
    • 1989
  • Elastic-plastic fracture toughness J$_{IC}$ can be used as an effective design criterion in elastic plastic fracture mechanics. In the J$_{IC}$ test methods approved by ASTM and JSME, there are discrepancies such as the definition of J$_{IC}$, the slope of the blunting line, curve fitting method and the measurement of crack extension etc. The objective of this paper is to evaluate the effect of these discrepancies on the determination of J$_{IC}$ values. Fracture toughness tests were performed on A516, SA508 and SCM415 steels, and test results were analyzed according to ASTM E 813-81, ASTM E 813-87 and JSME S 001-1981. Results showed significant differences depending on the analysis methods. Therefore, a conversion equation between two ASTM methods was proposed, and the conversion error was within acceptable range(less then 8.5%)en 8.5%)

Behavior Case Study of Temporary Structures during Underground Extension Work by Field Measurement (현장계측을 통한 지하증축공사 중 가설구조물의 거동 사례연구)

  • Kim, Uiseok;Min, Byungchan;Kang, Minkyu;Kim, Dongkwan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.8
    • /
    • pp.5-13
    • /
    • 2020
  • During the construction of underground space expansion of old facilities, it is necessary to secure temporary residence space for existing residents as well as noise and vibration issues during construction, and in the case of commercial, industrial, and social use, damage is expected from suspension of the use of facilities. There is a need for a technology that minimizes noise and vibration during underground expansion, enabling the use of existing facilities even during construction. In this study, a practical underground extension model is proposed by analyzing the behavior of the temporary structure and the surrounding ground as a result of measurement at each construction stage for a actual construction site. In order to solve the problems that occurred during construction, the basement slabs were placed in advance after the initial excavation. The measurement results (building inclinometer, crack measurement system, structure inclinometer and surface settlement meter) at the site were reviewed to analyze the behavior of the temporary structure and surrounding ground. As a result, it was confirmed that the inclinometer of the building and the structural inclinometer showed a tendency that the displacement after the slab line was placed was reduced or converged. The placement of basement slabs during underground extension not only relived the noise and vibration problems during construction, but also secured the stability of structures.

A Study on the Profile Change Measurement of Steam Generator Tubes with Tube Expansion Methods

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2011
  • Steam generator tubes for nuclear power plants contain the local shape transitions on their inner or outer surface such as dent, bulge, over-expansion, eccentricity, deflection, and so on by the application of physical force during the tube manufacturing and steam generator assembling and by the sludge (that is, corrosion products) produced during the plant operation. The structural integrity of tubes will be degraded by generating the corrosive crack at that location. The profilometry using the traditional bobbin probes which are currently applied for measuring the profile change of tubes gives us basic information such as axial locations and average magnitudes of deformations. However, the three-dimensional quantitative evaluation on circumferential locations, distributional angle, and size of deformations will have to be conducted to understand the effects of residual stresses increased by local deformations on corrosive cracking of tubes. Steam generator tubes of Korean standard nuclear power plants expanded within their tube-sheets by the explosive expansion method and suffered from corrosive cracks in the early stage of power operation. Thus, local deformations of steam generator tubes at the top of tube-sheet were measured with an advanced rotating probe and a laser profiling system for the two cases where the tubes expanded by the explosive expansion method and hydraulic expansion. Also, the trends of eccentricity, deflection, and over-expansion of tubes were evaluated. The advanced eddy current profilometry was confirmed to provide accurate information of local deformations compared with laser profilometry.

Development of Extra High Voltage(400kN) Porcelain Insulator for Transmission Lines (765 kV용 400 kN 현수애자 개발)

  • 최인혁;최장현;이동일;최연규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.348-353
    • /
    • 2003
  • This paper was the research of high voltage suspension insulator (400 [kN]) including pottery stone, feldspar, clay and alumina of 17 [wt%]. The slurry was fabricated after ball milling mixed raw materials. Green compacts were made by the extrusion of jiggering method and were sintered at 1300[$^{\circ}C$] for 50 [min.] in the tunnel kiln. The sintered density was reached to 97% of theoretical density, and the bending strength was 1658 [k $g_{f}$/$\textrm{cm}^2$] and hardness and fracture toughness which was measured by ICL( indentation crack length ) method were 1658 (kgf/$\textrm{cm}^2$) and 27.5 [Gpa], respectively. In measurement of tana and insulation break voltage of 400 (kN) porcelain, tan$\delta$ took some numerical value between 17${\times}$10$_{-3}$ and 61${\times}$10$_{-3}$ and insulation break voltage value was 19.9$\pm$1.4 [㎸/mm]. The test was performed to research whether the shape of pin affect a overvoltage break load or not As a consequence, when a pin was designed a pin diameter 51 [mm] with the bottom form of two-step constructed with straight in the suspension insulator, Insulator showed overvoltage break load 52 [ton] of the highest value and reflected a fine characteristic in aged deterioration test which is one of the accelerated aging test. Also it could be confirmed a fine characteristic through performing the test that electrical property of insulator was established correctly in accordance with IEC 60383-1 standards.s.

A Study on Improving the Efficiency of Facility Safety Inspection Work Using Images (영상을 활용한 시설물 안전점검 작업 효율성 향상 방안 연구)

  • Jeon, Kyungsik;Kim, Jintae;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • In general, the daily safety inspection activities, which investigate damages in structures and measures the size of the damage, have been relied heavily on the visual inspection so far. Since the probe of the condition and performance of facilities by such personnel is often dependent on the subjective judgment of the investigator, the consistency and repeatability of the probing results may reduce. Particularly, damage located in a difficult-to-reach place depends mainly on experience with the naked eye, and an unsafe method using a ladder has mainly applied when necessary. Therefore, in this study, we tried to propose a way of using images that can reduce the deviation between safety inspection investigators, enhance objectivity, and improve the safety of workers. In this study, we have applied homographic transformation as a method of correcting the image. As a result of analyzing the size of the damage in the corrected image of the test subject, it confirms that the accuracy of measuring the magnitude of the damage can satisfy the target levels of 5.0mm and 0.005m2, the target accuracy levels. As a result of the field verification test to which the proposed image correction technique applied, the coefficient of variation of the crack length in the structure decreased from 5.4~7.0% to 0.072~0.12%, and that of the damaged area from 10.9% to 1.6%. It confirms that the measurement accuracy is improved. Therefore, it is expected that this study on the image utilization technique in safety inspection activities can increase the accuracy of damage measurement and improve the reliability of the safety inspection reports and exterior survey drawings.

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

A Study on the Measurement of Axial Cracks in the Magnetic Flux Leakage NDT System (자기누설 비파괴 검사 시스템에서 축방향 미소결함 측정에 관한 연구)

  • Kim, Hui-Min;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu;Koo, Sung-Ja
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • From among the NDT (Non-Destructive Testing) methods, the MFL (Magnetic Flux Leakage) PIG (Pipeline Inspection Gauge) is especially suitable for testing pipelines because the pipeline has high magnetic permeability. MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is difficult to detect the crack which occured by exterior-interior pressure difference in pipelines and the shape of crack is very long and narrow. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The CMFL (Circumferential MF) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). By Simulating and Measuring the magnetic leakage field, it is possible to detect of axial cracks in the pipeline.

Measurement of rock fracture toughness under mode I, II & mixed-mode conditions by using disc-typed specimens (인장, 전단 및 혼합모드에서 디스크 시험편을 이용한 암석의 파괴인성 측정에 관한 연구)

  • 장수호;이정인
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.315-327
    • /
    • 1999
  • Rock fracture mechanics has been widely applied to blasting, hydraulic fracturing, rock slope and many other practical problems in rock engineering. But a measuring method for the fracture toughness of rock, one of the mort important parameters in fracture mechanics as an intrinsic property of rock, has not been yet well established. To obtain mode I rock fracture toughness, the more favorable disc-typed specimens such as CCNBD, SCB, chevron-notched SCB and BDT were used in this study. Rock fracture toughness under mixed-mode and mode II conditions was measured by using the STCA applied to the CCNBD specimen. Size effects such as specimen thickness, diameter and notch length on fracture toughness were investigated. From the mixed-mode results, fracture envelops were obtained by applying various regression curves. The mixed-mode results were also compared with three mixed-mode failure criteria. In each fracture toughness test, acoustic emission was measured to get the data for determining the load levels of different crack propagation patterns.

  • PDF

A study on the optimization of manufacturing processes of double wall bellows for dual fuel engine II - Optimization of welding process - (Dual Fuel 엔진용 이중관 벨로우즈 제작 공정의 최적화에 관한 연구 II - 용접공정의 최적화 -)

  • Kim, Pyung-Su;Kim, Jong-Do;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.504-509
    • /
    • 2016
  • Production processes of double wall bellows can be roughly categorized into two steps. In the first step, inner and outer bellows are made of STS316L in austenite stainless steel due to their excellent formability and corrosion resistance. In the second step, the double wall bellows are manufactured using the welding method with both the inner and outer bellows. The microstructure and defects of each weldment are observed to ensure the reliability of bellows since weldment is a highly vulnerable part, which can crack and fracture when bellows are formed or used. In this study, optimum welding conditions were derived from the analysis of microstructure and inspection of weldment of bellows that were produced using various welding procedure. Moreover, the mechanical properties were evaluated through hardness measurement of substrate, weldment and the heat-affected zone.